1
|
Adamczyk O, Deptuch A, Tarnawski TR, Zieliński PM, Drzewicz A, Juszyńska-Gałązka E. Electrospun Fiber Mats with Metronidazole: Design, Evaluation, and Release Kinetics. J Phys Chem B 2025. [PMID: 40178488 DOI: 10.1021/acs.jpcb.5c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Novel drug delivery systems (DDSs) strive to eliminate or at least reduce the side effects and limitations associated with conventional medical products. Among the many potential candidates for DDSs, there are one-dimensional micro- and nanostructured materials such as electrospun fibers. In this study, two different polymers, i.e., amphiphilic block copolymer (poly(2-vinylpyridine-co-styrene)) and hydrophobic polymer (polycaprolactone), were utilized as base materials for fibers. Through the electrospinning and coaxial electrospinning techniques, fibers with diverse architectures were obtained, homogeneous or core/shell structures. An antibacterial drug (metronidazole) in varying concentrations was incorporated into the electrospun fibers. The potential application of the obtained electrospun fiber mats is as a dressing for wounds or the treatment of periodontitis. The average diameter of fibers fell within the range of 700-1300 nm, with a drug content of 7-27 wt %. The amorphization or decrease in crystallinity of metronidazole present in the fibers was achieved during the electrospinning process. In vitro drug release tests showed that burst effects can be successfully suppressed, and more sustained release can be accomplished for some formulations. Therefore, electrospun polymer fiber mats are promising candidates for the local delivery of active substances.
Collapse
Affiliation(s)
- Olga Adamczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Aleksandra Deptuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Tomasz R Tarnawski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Piotr M Zieliński
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Anna Drzewicz
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ewa Juszyńska-Gałązka
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Zhao Y, Templonuevo RM, Chun J. Enhancement of polycaprolactone nanofiber film performance by hydrogen bonding interactions with chitosan for food packaging. Int J Biol Macromol 2025; 300:139437. [PMID: 39756740 DOI: 10.1016/j.ijbiomac.2024.139437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Hybrid environmentally friendly nanocomposite films were synthesized via electrospinning using polycaprolactone (PCL) and chitosan (CH). The resulting nanofiber films displayed a homogeneous fibrous microstructure with average diameters between 250-270 nm. Molecular simulation experiments revealed a progressive increase in hydrogen bonding over time. The impact of different CH concentrations on surface roughness was investigated, with results showing that PCL/CH (2 %) reduced surface roughness by 240 % compared to pure PCL film. Furthermore, the addition of CH imparted stable hydrophobic properties to the nanofiber film, with a water contact angle remaining steady at 107° after 20 s. L929 cell experiments confirmed that the nanofiber film exhibits good biocompatibility. Practical application studies using blueberries demonstrated that the PCL/CH (2 %) film effectively preserved freshness at room temperature for up to 5 days. These findings indicate that PCL/CH (2 %) films hold significant potential for use in fruit packaging applications.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Food Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Rea Mae Templonuevo
- Department of Food Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea; College of Fisheries, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Jiyeon Chun
- Department of Food Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea; Bio-Healthcare Research and Analysis Center, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea; Glocal University Project Team, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
3
|
Papuc A, Bran S, Moldovan M, Lucaciu O, Armencea G, Baciut G, Dinu C, Onișor F, Kretschmer W, Baciut M. How Is Bone Regeneration Influenced by Polymer Membranes? Insight into the Histological and Radiological Point of View in the Literature. MEMBRANES 2024; 14:193. [PMID: 39330534 PMCID: PMC11434093 DOI: 10.3390/membranes14090193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
The aim of this study was to analyze published works that investigate the in vivo bone regeneration capacity of polymeric membranes loaded with active substances and growth factors. This scoping review's purpose was to highlight the histological and radiological interpretation of the locally produced effects of the polymer membranes studied so far. For the selection of the articles, a search was made in the PubMed and ScienceDirect databases, according to the PRISMA algorithm, for research/clinical trial type studies. The search strategy was represented by the formula "((biodegradable scaffolds AND critical bone defect) OR (polymers AND mechanical properties) OR (3Dmaterials AND cytotoxicity) AND bone tissue regeneration)" for the PubMed database and "((biodegradable scaffolds AND polymers) OR (polymers AND critical bone defects) OR (biodegradable scaffolds AND mechanical properties) AND bone tissue regeneration)" for the ScienceDirect database. Ethical approval was not required. Eligibility criteria included eight clinical studies published between 2018 and 2023. Our analysis showed that polymer membranes that met most histopathological criteria also produced the most remarkable results observed radiologically. The top effective scaffolds were those containing active macromolecules released conditionally and staged. The PLGA and polycaprolactone scaffolds were found in this category; they granted a marked increase in bone density and improvement of osteoinduction. But, regardless of the membrane composition, all membranes implanted in created bone defects induced an inflammatory response in the first phase.
Collapse
Affiliation(s)
- Alexandra Papuc
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| | - Marioara Moldovan
- Raluca Ripan Institute for Research in Chemistry, Fantanele 30, Babeș Bolyai University, 400294 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babes Str. 15, 400012 Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| | - Florin Onișor
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| | - Winfried Kretschmer
- Klinik fur Mund-, Kiefer- und Plastische Gesichtschirurgie, Alb Fils Kliniken GmbH, Goppingen, Baden-Wurttemberg, 73035 Göppingen, Germany
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, Iuliu Hossu Str. 37, 400029 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ferreira JO, Zambuzi GC, Camargos CHM, Carvalho ACW, Ferreira MP, Rezende CA, de Freitas O, Francisco KR. Zein and hydroxypropyl methylcellulose acetate succinate microfibers combined with metronidazole benzoate and/or metronidazole-incorporated cellulose nanofibrils for potential periodontal treatment. Int J Biol Macromol 2024; 261:129701. [PMID: 38280709 DOI: 10.1016/j.ijbiomac.2024.129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The development of flexible and porous materials to control antibacterial delivery is a pivotal endeavor in medical science. In this study, we aimed to produce long and defect-free fibers made of zein and hydroxypropyl methylcellulose acetate succinate (HPMCAS) to be used as a platform for the release of metronidazole (MDZ) and metronidazole benzoate (BMDZ) to be potentially used in periodontal treatment. Microfibers prepared via electrospinning under a 2:3 (w/w) zein to HPMCAS ratio, containing 0.5 % (w/w) poly(ethylene oxide) (PEO) and 1 % (w/w) cellulose nanofibril (CNF) were loaded with 40 % (w/w) MDZ, 40 % (w/w) BMDZ, or a combination of 20 % (w/w) of each drug. The addition of CNF improved the electrospinning process, resulting in long fibers with reduced MDZ and BMDZ surface crystallization. MDZ- and BMDZ-incorporated fibers were semicrystalline and displayed commendable compatibility among drugs, nanocellulose and polymeric chains. Release tests showed that zein/HPMCAS/PEO fibers without CNF and with 20 % (w/w) MDZ/ 20 % (w/w) BMDZ released the drug at a slower and more sustained rate compared to other samples over extended periods (up to 5 days), which is a favorable aspect concerning periodontitis treatment.
Collapse
Affiliation(s)
- João O Ferreira
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil
| | - Giovana C Zambuzi
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil
| | - Camilla H M Camargos
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil; School of Fine Arts, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana C W Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Maíra P Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Camila A Rezende
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Kelly R Francisco
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil; Department of Natural Science, Mathematics and Education, Federal University of São Carlos-UFSCar, Araras 13604-900, SP, Brazil.
| |
Collapse
|
5
|
Mirica IC, Furtos G, Moldovan M, Prodan D, Petean I, Campian RS, Pall E, Lucaciu O. Morphology, Cytotoxicity, and Antimicrobial Activity of Electrospun Polycaprolactone Biomembranes with Gentamicin and Nano-Hydroxyapatite. MEMBRANES 2023; 14:10. [PMID: 38248701 PMCID: PMC10819002 DOI: 10.3390/membranes14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The aim of this research is to develop new nanocomposite membranes (NMs) for guided bone regeneration from polycaprolactone (PCL), with different concentrations of gentamicin sulfate (GEN) and nano-hydroxyapatite (nHAP) through electrospinning. The obtained NMs were characterized for structure through SEM and AFM, which revealed the influence of GEN and nHAP on the fiber diameter. The addition of GEN lowered the fiber diameter, and the addition of nHAP increased the diameter of the fibers. The NMs demonstrated antibacterial properties against P. aeruginosa, S. aureus, B. cereus, and E. coli depending on the drug concentration, while being negligibly affected by the nHAP content. NM cytotoxicity assessment, performed once using the MTT assay, revealed no cytotoxicity. The developed NMs could be a promising alternative for guided bone regeneration.
Collapse
Affiliation(s)
- Ioana-Codruta Mirica
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-C.M.); (R.-S.C.); (O.L.)
| | - Gabriel Furtos
- Department of Dental Materials, Raluca Ripan, Institute of Research in Chemistry, Babes-Bolyai University, 400294 Cluj-Napoca, Romania; (M.M.); (D.P.)
| | - Marioara Moldovan
- Department of Dental Materials, Raluca Ripan, Institute of Research in Chemistry, Babes-Bolyai University, 400294 Cluj-Napoca, Romania; (M.M.); (D.P.)
| | - Doina Prodan
- Department of Dental Materials, Raluca Ripan, Institute of Research in Chemistry, Babes-Bolyai University, 400294 Cluj-Napoca, Romania; (M.M.); (D.P.)
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Radu-Septimiu Campian
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-C.M.); (R.-S.C.); (O.L.)
| | - Emoke Pall
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-C.M.); (R.-S.C.); (O.L.)
| |
Collapse
|
6
|
Hybrid 3D Printed and Electrospun Multi-Scale Hierarchical Polycaprolactone Scaffolds to Induce Bone Differentiation. Pharmaceutics 2022; 14:pharmaceutics14122843. [PMID: 36559336 PMCID: PMC9781012 DOI: 10.3390/pharmaceutics14122843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Complex scaffolds composed of micro- and nano-structures are a key target in tissue engineering and the combination of sequential 3D printing and electrospinning enables the fabrication of these multi-scale structures. In this work, dual 3D printed and electrospun polycaprolactone (PCL) scaffolds with multiple mesh layers were successfully prepared. The scaffold macro- and micro-porosity were assessed by optical and scanning electron microscopy, showing that electrospun fibers formed aligned meshes within the pores of the scaffold. Consequently, the hydrophilicity of the scaffold increased with time, enhancing cell adhesion and growth. Additionally, compression tests in back and forth cycles demonstrated a good shape recovery behavior of the scaffolds. Biological results indicated that hybrid PCL scaffolds are biocompatible and enable a correct cell culture over time. Moreover, MC3T3-E1 preosteoblast culture on the scaffolds promoted the mineralization, increased the alkaline phosphatase (ALP) activity and upregulated the expression of early and late osteogenic markers, namely ALP and osteopontin (OPN), respectively. These results demonstrate that the sequential combination of 3D printing and electrospinning provides a facile method of incorporating fibers within a 3D printed scaffold, becoming a promising approach towards multi-scale hierarchical scaffolds capable of guiding the osteogenic differentiation.
Collapse
|
7
|
Enhanced In Vitro Biocompatible Polycaprolactone/Nano-Hydroxyapatite Scaffolds with Near-Field Direct-Writing Melt Electrospinning Technology. J Funct Biomater 2022; 13:jfb13040161. [PMID: 36278630 PMCID: PMC9590026 DOI: 10.3390/jfb13040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Polycaprolactone (PCL) scaffold is a common biological material for tissue engineering, owing to its good biocompatibility, biodegradability and plasticity. However, it is not suitable for osteoblast adhesion and regeneration of bone tissue due to its non-biological activity, poor mechanical strength, slow degradation speed, smooth surface and strong hydrophobicity. To improve the mechanical properties and biocompatibility of PCL scaffold, the PCL/nHA scaffolds were prepared by melting and blending different proportions of nano-hydroxyapatite (nHA) with PCL by the near-field direct-writing melt electrospinning technology in this study. The morphology, porosity, mechanical properties and in vitro biocompatibility of the PCL/nHA scaffolds were studied. The results showed that when the proportion of nHA was less than or equal to 25%, PCL/nHA composite scaffolds were easily formed in which bone marrow mesenchymal stem cells proliferated successfully. When the proportion of nHA was 15%, the PCL/nHA composite scaffolds had excellent structural regularity, good fiber uniformity, outstanding mechanical stability and superior biocompatibility. The PCL/nHA composite scaffolds were ideal scaffold materials, which would broaden their applications for bone tissue engineering.
Collapse
|
8
|
Fang L, Lu X, Cui C, Shi Q, Wang H. Metronidazole-loaded nanoparticulate thermoreversible gel for gynecologic infection of Trichomonas vaginalis. Am J Transl Res 2022; 14:4015-4023. [PMID: 35836901 PMCID: PMC9274572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Trichomoniasis is a common sexually-transmitted disease that is associated with increased perinatal morbidity and human immunodeficiency virus (HIV) transmission. This study aimed to develop a Metronidazole-loaded nanoparticulate thermoreversible gel for gynecological infection of Trichomonas vaginalis (T. vaginalis). METHODS The optimized nanoparticulate formulation was used in thermoreversible gel and characterized for physico-chemical properties, antiparasitic activity, and in vivo efficacy in the BALB/c mouse model. RESULT A nearly threefold rise in antiparasitic activity of the optimized formulation was observed as compared to that of regular gel. Formulation F5 successfully cured the trichomoniasis within 3 days, while regular gel and pure Metronidazole (MTDZ) failed to cure this infection (P<0.05). CONCLUSION The present investigation confirms the ability of thermoreversible gel containing nanoparticulate metronidazole againstthe infection by T. vaginalis. The developed gel could be an alternative to the existing drug delivery system for the treatment of trichomoniasis.
Collapse
Affiliation(s)
- Ling Fang
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Chengjun Cui
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Qifeng Shi
- Department of Pathology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Haojue Wang
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| |
Collapse
|
9
|
Stevanovic M, Selakovic D, Vasovic M, Ljujic B, Zivanovic S, Papic M, Zivanovic M, Milivojevic N, Mijovic M, Tabakovic SZ, Jokanovic V, Arnaut A, Milanovic P, Jovicic N, Rosic G. Comparison of Hydroxyapatite/Poly(lactide-co-glycolide) and Hydroxyapatite/Polyethyleneimine Composite Scaffolds in Bone Regeneration of Swine Mandibular Critical Size Defects: In Vivo Study. Molecules 2022; 27:1694. [PMID: 35268796 PMCID: PMC8911599 DOI: 10.3390/molecules27051694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Reconstruction of jaw bone defects present a significant problem because of specific aesthetic and functional requirements. Although widely used, the transplantation of standard autograft and allograft materials is still associated with significant constraints. Composite scaffolds, combining advantages of biodegradable polymers with bioceramics, have potential to overcome limitations of standard grafts. Polyethyleneimine could be an interesting novel biocompatible polymer for scaffold construction due to its biocompatibility and chemical structure. To date, there have been no in vivo studies assessing biological properties of hydroxyapatite bioceramics scaffold modified with polyethyleneimine. The aim of this study was to evaluate in vivo effects of composite scaffolds of hydroxyapatite ceramics and poly(lactide-co-glycolide) and novel polyethyleneimine on bone repair in swine's mandibular defects, and to compare them to conventional bone allograft (BioOss). Scaffolds were prepared using the method of polymer foam template in three steps. Pigs, 3 months old, were used and defects were made in the canine, premolar, and molar area of their mandibles. Four months following the surgical procedure, the bone was analyzed using radiological, histological, and gene expression techniques. Hydroxyapatite ceramics/polyethyleneimine composite scaffold demonstrated improved biological behavior compared to conventional allograft in treatment of swine's mandibular defects, in terms of bone density and bone tissue histological characteristics.
Collapse
Affiliation(s)
- Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
- Department of Maxillofacial Surgery, Medical Faculty Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.S.); (G.R.)
| | - Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Nevena Milivojevic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Milica Mijovic
- Institute of Pathology, Faculty of Medicine, University in Priština, 38220 Kosovska Mitrovica, Serbia;
| | - Sasa Z. Tabakovic
- Department of Maxillofacial Surgery, Medical Faculty Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Vukoman Jokanovic
- Department of Atomic Physics, Vinca Institute of Nuclear Sciences, 11000 Belgrade, Serbia;
| | - Aleksandra Arnaut
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (M.V.); (S.Z.); (M.P.); (A.A.); (P.M.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (D.S.); (G.R.)
| |
Collapse
|