1
|
Erwardt P, Szymczak B, Wiśniewski M, Maciejewski B, Świdziński M, Strzelecki J, Nowak W, Roszek K. l-Asparaginase Immobilized on Nanographene Oxide as an Efficient Nanobiocatalytic Tool for Asparagine Depletion in Leukemia Cells. Bioconjug Chem 2025; 36:253-262. [PMID: 39808739 PMCID: PMC11843607 DOI: 10.1021/acs.bioconjchem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance. Recent research has explored alternative formulations and delivery methods to enhance its efficacy and minimize adverse effects. One promising approach involves the immobilization of l-ASNase onto nanostructured materials, offering improved enzymatic activity and biocompatibility of the support. We harnessed an E. coli l-ASNase type II preparation to develop a novel strategy of enzyme immobilization on graphene oxide (GO)-based support. We compared GO and nanographene oxide (nGO) in terms of their biocompatibility and influence on enzyme parameters. The obtained l-ASNase on the nGO nanobiocatalyst maintains enzymatic activity and increases its stability, selectively acting on K562 leukemia cells without cytotoxic influence on normal endothelial cells. In the case of treated K562 cells, we confirmed enlargement in the cell and nucleus size, disturbance in the cell cycle (interphase and metaphase), and increased apoptosis rate. The potential therapeutic possibilities of immobilized l-ASNase on leukemia cell damage are also discussed, highlighting the importance of further research in this area for advancing cancer therapy.
Collapse
Affiliation(s)
- Paulina Erwardt
- Department
of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland
| | - Bartosz Szymczak
- Department
of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| | - Marek Wiśniewski
- Department
of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland
| | - Bartosz Maciejewski
- Department
of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| | - Michał Świdziński
- Department
of Cellular and Molecular Biology, Faculty of Biological and Veterinary
Sciences, Nicolaus Copernicus University
in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| | - Janusz Strzelecki
- Department
of Biophysics, Institute of Physics, Faculty of Physics, Astronomy
and Informatics, Nicolaus Copernicus University
in Torun, ul. Grudziądzka
5, 87-100 Torun, Poland
| | - Wiesław Nowak
- Department
of Biophysics, Institute of Physics, Faculty of Physics, Astronomy
and Informatics, Nicolaus Copernicus University
in Torun, ul. Grudziądzka
5, 87-100 Torun, Poland
| | - Katarzyna Roszek
- Department
of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
2
|
Madeo LF, Schirmer C, Cirillo G, Asha AN, Ghunaim R, Froeschke S, Wolf D, Curcio M, Tucci P, Iemma F, Büchner B, Hampel S, Mertig M. ZnO-Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells. Molecules 2024; 29:3770. [PMID: 39202850 PMCID: PMC11357239 DOI: 10.3390/molecules29163770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized. The ZnO-to-GO ratio was determined through thermogravimetric analysis, while scanning electron microscopy and transmission electron microscopy were used to provide insight into the morphology of the nanocomposite. Using energy-dispersive X-ray spectroscopy, it was possible to confirm that the graphene flakes were homogeneously coated with ZnO. The crystallite size of the ZnO nanoparticles in the new composite was determined using X-ray powder diffraction. The capacity of Z-G to enhance the toxicity of the anticancer drug Paclitaxel towards breast cancer cells was assessed via a cell viability study, showing the remarkable anticancer activity of the obtained system. Such results support the potential use of Z-G as an anticancer agent in combination with a common chemotherapeutic like Paclitaxel, leading to new chemotherapeutic formulations.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Christine Schirmer
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Ayah Nader Asha
- Department of Applied Chemistry and Biology, Palestine Polytechnic University, Hebron P.O. Box 198, Palestine; (A.N.A.); (R.G.)
| | - Rasha Ghunaim
- Department of Applied Chemistry and Biology, Palestine Polytechnic University, Hebron P.O. Box 198, Palestine; (A.N.A.); (R.G.)
| | - Samuel Froeschke
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Daniel Wolf
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Bernd Büchner
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Michael Mertig
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Rheological Properties of Different Graphene Nanomaterials in Biological Media. MATERIALS 2022; 15:ma15103593. [PMID: 35629621 PMCID: PMC9147357 DOI: 10.3390/ma15103593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Carbon nanomaterials have received increased attention in the last few years due to their potential applications in several areas. In medicine, for example, these nanomaterials could be used as contrast agents, drug transporters, and tissue regenerators or in gene therapy. This makes it necessary to know the behavior of carbon nanomaterials in biological media to assure good fluidity and the absence of deleterious effects on human health. In this work, the rheological characterization of different graphene nanomaterials in fetal bovine serum and other fluids, such as bovine serum albumin and water, is studied using rotational and microfluidic chip rheometry. Graphene oxide, graphene nanoplatelets, and expanded graphene oxide at concentrations between 1 and 3 mg/mL and temperatures in the 25–40 °C range were used. The suspensions were also characterized by transmission and scanning electron microscopy and atomic force microscopy, and the results show a high tendency to aggregation and reveals that there is a protein–nanomaterial interaction. Although rotational rheometry is customarily used, it cannot provide reliable measurements in low viscosity samples, showing an apparent shear thickening, whereas capillary viscometers need transparent samples; therefore, microfluidic technology appears to be a suitable method to measure low viscosity, non-transparent Newtonian fluids, as it is able to determine small variations in viscosity. No significant changes in viscosity are found within the solid concentration range studied but it decreases between 1.1 and 0.6 mPa·s when the temperature raises from 25 to 40 °C.
Collapse
|
4
|
Wiśniewski M. Comments on "Interaction of graphene oxide with lysozyme: Insights from conformational structure and surface charge investigations" by Binbin Li, Changchun Hao, Hengyu Liu, Haiyan Yang, Kunfeng Zhong, Mingduo Zhang, Runguang Sun published in spectrochimica acta part A: Molecular and biomolecular spectroscopy 264 (2022) 120207. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120700. [PMID: 34902693 DOI: 10.1016/j.saa.2021.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Poland.
| |
Collapse
|