1
|
Zhang L, Fan J, Ding L, Zhang P, Ye J, Lu T. Enhanced bone regeneration via surface functionalization of biphasic calcium phosphate scaffolds with dopamine-modified hyaluronic acid hydrogel or mg-doped calcium silicate. Int J Biol Macromol 2025; 308:142561. [PMID: 40154680 DOI: 10.1016/j.ijbiomac.2025.142561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Rapid induction of angiogenesis is crucial for the treatment of large bone defects and accelerating the material-mediated bone defect repair process. In this study, we employed a negative pressure infiltration method to coat the surface of porous BCP scaffolds with dopamine-modified hyaluronic acid (HA-DA) hydrogel and magnesium-doped calcium silicate (Mg-CS). In vitro results demonstrated that HA-DA hydrogel coating with an appropriate degree of dopamine grafting significantly improved the in vitro angiogenic activity of BCP scaffolds without affecting their osteogenic activity. The Mg-CS coating, heat-treated to ensure good combination with the BCP matrix, could sustainably release angiogenic silicon ions and osteogenic magnesium ions. Results from rat cranial defect repair showed that the implanted BCP@HA-DA-2 and BCP@10 Mg-CS scaffolds further accelerated the occurrence and development of neovascularization at the defect site, facilitating new bone formation. Among them, BCP@10 Mg-CS scaffold exhibited the best bone defect repair effect and has the potential for clinical application.
Collapse
Affiliation(s)
- Luhui Zhang
- Schcool of Art and Media, Guangzhou Vocational University of Science and Technology, Guangzhou, Guangdong 510641, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Jiajia Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Lin Ding
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Peng Zhang
- School of Stamotology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| | - Teliang Lu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, PR China.
| |
Collapse
|
2
|
Lee J, Bae JS, Kim YI, Yoo KH, Yoon SY. Synthesis, Characterization, and Biological Performances of Magnesium-Substituted Dicalcium Phosphate Anhydrous. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4605. [PMID: 39336346 PMCID: PMC11432824 DOI: 10.3390/ma17184605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Dicalcium phosphate anhydrous (DCPA, CaHPO4) is regarded as an orthopedic material due to its ability to match the generation of new bone to the rate of implant resorption without considering the material's mechanical stability. Additionally, magnesium (Mg) is widely recognized for its essential function in bone metabolism, especially during the initial phases of osteogenesis. Therefore, we explored the influences of Mg ions on DCPA powder, in biological responses, and on the enhancement of osteogenic properties. Mg-DCPA powders with varying substitution levels (0, 3, 5, and 7 mol%) were produced using the co-precipitation method. In the in vitro test, precipitates began to develop on the surface of the Mg-DCPA powders after 7 days. These results indicate that Mg ions in the DCPA powder could enhance the generation of a new apatite phase when subjected to physiological fluids on the surface of the powder. In addition, the osteogenic performance of the DCPA powder was improved by adding Mg ions. The most effective magnesium substitution content in the DCPA powder in order to improve its osteogenic potential was approximately 3 mol%. Consequently, this amount of magnesium in the DCPA powder could control the maintaining time in the implantation operation to produce a new apatite phase.
Collapse
Affiliation(s)
- Jiyu Lee
- School of Materials Science Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kyung-Hyeon Yoo
- JSPS Post Doc. Fellowship, Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seog-Young Yoon
- School of Materials Science Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Song X, Segura-Egea JJ, Díaz-Cuenca A. Sol-Gel Technologies to Obtain Advanced Bioceramics for Dental Therapeutics. Molecules 2023; 28:6967. [PMID: 37836810 PMCID: PMC10574775 DOI: 10.3390/molecules28196967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this work is to review the application of bioceramic materials in the context of current regenerative dentistry therapies, focusing on the latest advances in the synthesis of advanced materials using the sol-gel methodology. Chemical synthesis, processing and therapeutic possibilities are discussed in a structured way, according to the three main types of ceramic materials used in regenerative dentistry: bioactive glasses and glass ceramics, calcium phosphates and calcium silicates. The morphology and chemical composition of these bioceramics play a crucial role in their biological properties and effectiveness in dental therapeutics. The goal is to understand their chemical, surface, mechanical and biological properties better and develop strategies to control their pore structure, shape, size and compositions. Over the past decades, bioceramic materials have provided excellent results in a wide variety of clinical applications related to hard tissue repair and regeneration. Characteristics, such as their similarity to the chemical composition of the mineral phase of bones and teeth, as well as the possibilities offered by the advances in nanotechnology, are driving the development of new biomimetic materials that are required in regenerative dentistry. The sol-gel technique is a method for producing synthetic bioceramics with high purity and homogeneity at the molecular scale and to control the surfaces, interfaces and porosity at the nanometric scale. The intrinsic nanoporosity of materials produced by the sol-gel technique correlates with the high specific surface area, reactivity and bioactivity of advanced bioceramics.
Collapse
Affiliation(s)
- Xiaozhe Song
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Sevilla, Spain;
| | - Juan J. Segura-Egea
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41009 Seville, Spain;
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Sevilla, Spain;
| |
Collapse
|
4
|
Soliman YM, Mabrouk M, Raboh ASA, Tohamy KM, Beherei HH. Influence of the addition of different metal oxides on physicochemical and biological properties of calcium fluorosilicate/PCL bone cement. J Mech Behav Biomed Mater 2023; 146:106075. [PMID: 37591054 DOI: 10.1016/j.jmbbm.2023.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Calcium silicate cements have been greatly developed in the last decades through different approaches. Among these approaches, the inclusion of antibacterial agents or addition of metal oxides. Herein, calcium silicate cement containing fluorine (CFS) was developed from sodium fluorosilicate precursor for the first time using chemical perception method. Afterwards, metal oxide Bi2O3 or MgO or ZrO2 was individually mixed with CFS powder and blended together using Polycaprolactone polymer (PCL). The cement mixtures were characterized using DSC, XRD, FTIR and SEM/EDX to determine the effect of metal oxide on the pure CFS. Furthermore, mechanical, antibacterial and cell viability properties were evaluated for the developed CFS mixture cements. Moreover, these CFS mixture cements were implanted in male Wistar rats to determine the effect of metal oxides on the rate of bone reformation. The findings of physicochemical and morphological characterization showed no remarkable effects on the pure CFS after mixing with each metal oxide. However, enhanced compressive strengths (up to 104.07N/cm2), antibacterial activity and cell viability (up to 96%) were achieved for the CFS cement mixtures. Finally, the in vivo studies confirmed the biocompatibility of the CFS cement mixtures and especially those mixed with Bi2O3 or ZrO2. Therefore, this study supports that CFS blends with Bi2O3 or ZrO2 can be novel promising cementing materials for bone restoration.
Collapse
Affiliation(s)
- Yasser M Soliman
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrir St), Dokki, Giza, P.O.12622, Egypt.
| | - Ahmed S Abd Raboh
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Khairy M Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St (former EL Tahrir St), Dokki, Giza, P.O.12622, Egypt
| |
Collapse
|
5
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
6
|
Estrela C, Cintra LTA, Duarte MAH, Rossi-Fedele G, Gavini G, Sousa-Neto MD. Mechanism of action of Bioactive Endodontic Materials. Braz Dent J 2023; 34:1-11. [PMID: 36888836 PMCID: PMC10027099 DOI: 10.1590/0103-6440202305278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 03/08/2023] Open
Abstract
A continuous search for bioactive materials capable of supporting the replacement of damaged pulp tissue, with effective sealing potential and biocompatibility, has represented the attention of studies over the last decades. This study involves a narrative review of the literature developed by searching representative research in PUBMED/MEDLINE and searches in textbooks associated with the mechanism of action of bioactive materials (calcium hydroxide, mineral trioxide aggregate (MTA), and calcium silicate cements). The reflective analysis of the particularities of the chemical elements of these materials, considering the tissue and antibacterial mechanism of action, allows a better understanding of the characteristics and similarities in their tissue responses. Calcium hydroxide paste remains the antibacterial substance of choice as intracanal dressing for the treatment of root canal system infections. Calcium silicate cements, including MTA, show a favorable biological response with the stimulation of mineralized tissue deposition in sealed areas when in contact with connective tissue. This is due to the similarity between the chemical elements, especially ionic dissociation, the potential stimulation of enzymes in tissues, and the contribution towards an alkaline environment due to the pH of these materials. The behavior of bioactive materials, especially MTA and the new calcium silicate cements in the biological sealing activity, has been shown to be effective. Contemporary endodontics has access to bioactive materials with similar properties, which can stimulate a biological seal in lateral and furcation root perforations, root-end fillings and root fillings, pulp capping, pulpotomy, apexification, and regenerative endodontic procedures, in addition to other clinical conditions.
Collapse
Affiliation(s)
- Carlos Estrela
- School of Dentistry, Federal University of Goiás, Goiânia, GO,
Brazil
| | | | | | | | - Giulio Gavini
- School of Dentistry, University of São Paulo, São Paulo, SP,
Brazil
| | | |
Collapse
|
7
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Int J Biol Macromol 2022; 219:1319-1336. [PMID: 36055598 DOI: 10.1016/j.ijbiomac.2022.08.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022]
Abstract
Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds.. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.
Collapse
|
9
|
Bidwai D, Parauha YR, Sahu MK, Dhoble SJ, Jayasimhadri M, Swati G. Synthesis and luminescence characterization of aqueous stable Sr3MgSi2O8: Eu2+, Dy3+ long afterglow nanophosphor for low light illumination. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Morphological and Chemical Analysis of Different Types of Calcium Silicate-Based Cements. Int J Dent 2022; 2022:6480047. [PMID: 35633889 PMCID: PMC9135564 DOI: 10.1155/2022/6480047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives. Particle size and shape can influence the properties of materials. However, to improve the physicochemical and biological properties of mineral trioxide aggregate (MTA), silicate-based hydraulic cements were introduced. This study aimed to evaluate and compare the major constituents and crystalline structures along with the surface morphology of different types of calcium silicate-based cement (CSC). Materials and Methods. Six different types of CSC (white Portland cement, white ProRoot MTA, white MTA Angelus, Biodentine, and Endosequence, both putty and paste) were used in this study. Five samples of each material were analyzed in both uncured and cured cement using scanning electron microscopy/energy-dispersive X-ray (SEM/EDX), X-ray diffraction (XRD), and Fourier transform-infrared spectroscopy (FTIR). Results. SEM analysis showed that the surfaces of all materials consisted of particle sizes ranging from 0.194 μm to approximately 51.82 μm. The basic elements found in both uncured and cured cement of all tested materials using EDX were carbon, calcium, silicon, and oxygen. A difference was observed in the presence or absence of magnesium, aluminum, bismuth, zirconium, and tantalum. XRD showed that all tested materials were composed mainly of tricalcium silicate and dicalcium silicate, which are the main components of Portland cement. FTIR analysis showed aromatic rings, phosphine PH, alkyl halides, and alcohol O-H groups in all tested materials but at different wavenumbers. Conclusions. The different types of CSCs tested in this study were primarily modified types of Portland cement with the addition of radiopacifiers. ProRoot MTA and MTA Angelus contained bismuth oxide, Biodentine contains zirconium oxide, whereas Endosequence root repair materials (both putty and paste) contained zirconium oxide and tantalum oxide. Endosequence root repair materials showed smaller particle sizes than the other groups. White PC had the most irregular and large particle sizes. CSC had a smaller particle size, except for MTA Angelus. Clinical Relevance. The composition of CSC has a direct influence on the properties of these cements, which may affect the clinical outcome of the treatment.
Collapse
|