1
|
Yadav K, Sahu KK, Dubey A, Pradhan HK, Sucheta, Pradhan M. Bioprinting functional constructs for women's reproductive health: Utilizing tailored biomaterials and biopolymer macromolecules for drug delivery and tissue regeneration. Int J Biol Macromol 2025:143990. [PMID: 40348223 DOI: 10.1016/j.ijbiomac.2025.143990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The application of 3D bioprinting, combined with the versatility of biomaterials and biopolymers macromolecules is revolutionizing the landscape of women's reproductive health. Biomaterials, including both natural and synthetic variants, offer unmatched biocompatibility, degradability, and functional adaptability, enabling the development of innovative solutions for complex reproductive disorders. This review examines the pivotal role of biomaterials and biopolymers macromolecules in creating scaffolds, bioinks, and drug delivery systems tailored to address disorders such as endometriosis, polycystic ovary syndrome, gynecological cancers, and so on. By integrating biomaterials, 3D bioprinting overcomes anatomical and physiological challenges unique to the female reproductive tract, such as cyclic hormonal variations and diverse microbiomes, ensuring precise and personalized healthcare interventions. The potential of various polymer-based hydrogels (biomaterials and biopolymers) in sustained drug delivery and regenerative tissue applications is highlighted, along with advancements in tissue-engineered constructs for reproductive health restoration. This amalgamation of polymer science and 3D bioprinting not only enhances therapeutic outcomes but also paves the way for innovative advancements in women's healthcare, addressing long-standing challenges with unparalleled precision and efficacy.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India; Gracious College of Pharmacy, Abhanpur, Chhattisgarh 493661, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Hare Krishna Pradhan
- Shree Jaganath Multispecialty Hospital, Mahadev Ghat Road, Raipur 492013, Chhattisgarh, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Madhulika Pradhan
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India.
| |
Collapse
|
2
|
Malos IG, Ghizdareanu AI, Vidu L, Matei CB, Pasarin D. The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective. Foods 2025; 14:1488. [PMID: 40361571 DOI: 10.3390/foods14091488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey's significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors.
Collapse
Affiliation(s)
- Iuliu Gabriel Malos
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania
| | - Andra-Ionela Ghizdareanu
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Livia Vidu
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania
| | - Catalin Bogdan Matei
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Diana Pasarin
- National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Sha’at F, Miu D, Eremia MC, Neagu G, Albulescu A, Albulescu R, Deaconu M, Vladu MG, Pavaloiu RD. Fabrication and Evaluation of Polyhydroxyalkanoate-Based Nanoparticles for Curcumin Delivery in Biomedical Applications. Molecules 2025; 30:1216. [PMID: 40141993 PMCID: PMC11944280 DOI: 10.3390/molecules30061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the fabrication and characterization of polymeric nanoparticles based on polyhydroxyalkanoates (PHAs) loaded with curcumin for biomedical applications. PHAs, biodegradable and biocompatible polymers, were synthesized via bacterial fermentation and used to encapsulate curcumin using the nanoprecipitation method. The resulting nanoparticles were characterized for their particle size, polydispersity index, and encapsulation efficiency, achieving high entrapment rates (above 80%) and nanometric size distribution. Stability assessments demonstrated prolonged structural integrity under storage conditions. In vitro release studies conducted in phosphate-buffered saline at pH 5 and 7.4 revealed sustained drug release profiles. Biocompatibility and cytotoxicity assays using human astrocytes and fibroblasts confirmed the nanoparticles' safety, while antiproliferative tests on glioblastoma and colon cancer cell lines indicated potential therapeutic efficacy. Additionally, skin irritation and corrosion tests using the EpiDerm™ model classified the formulations as non-irritant and non-corrosive. These findings suggest that PHA-based nanoparticles offer a promising nanocarrier system for curcumin delivery, with potential applications in cancer treatment and regenerative medicine. Future research should focus on optimizing the formulation and evaluating in vivo therapeutic effects.
Collapse
Affiliation(s)
- Fawzia Sha’at
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Dana Miu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe POLIZU St., 011061 Bucharest, Romania;
| | - Mihaela Carmen Eremia
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Georgeta Neagu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Adrian Albulescu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Mihai Bravu Av. nr. 285, 3rd District, 030304 Bucharest, Romania
| | - Radu Albulescu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Mihaela Deaconu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe POLIZU St., 011061 Bucharest, Romania;
| | - Mariana Gratiela Vladu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Ramona-Daniela Pavaloiu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| |
Collapse
|
4
|
Getino L, Martín JL, Chamizo-Ampudia A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024; 12:2028. [PMID: 39458337 PMCID: PMC11510099 DOI: 10.3390/microorganisms12102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The search for alternatives to petrochemical plastics has intensified, with increasing attention being directed toward bio-based polymers (bioplastics), which are considered healthier and more environmentally friendly options. In this review, a comprehensive overview of polyhydroxyalkanoates (PHAs) is provided, including their characterization, applications, and the mechanisms underlying their biosynthesis. PHAs are natural polyesters produced by a wide range of prokaryotic and some eukaryotic organisms, positioning them as a significant and widely studied type of bioplastic. Various strategies for the production of PHAs from agroindustrial waste, such as cacao shells, cheese whey, wine, wood, and beet molasses, are reviewed, emphasizing their potential as sustainable feedstocks. Industrial production processes for PHAs, including the complexities associated with extraction and purification, are also examined. Although the use of waste materials offers promise in reducing costs and environmental impact, challenges remain in optimizing these processes to enhance efficiency and cost-effectiveness. The need for continued research and development to improve the sustainability and economic viability of PHA production is emphasized, positioning PHAs as a viable and eco-friendly alternative to conventional petroleum-based plastics.
Collapse
Affiliation(s)
- Luis Getino
- Área de Genética, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - José Luis Martín
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
- Institute of Molecular Biology, Genomics and Proteomics (INBIOMIC), Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
5
|
Panda J, Mishra AK, Mohanta YK, Patowary K, Rauta PR, Mishra B. Exploring Biopolymer for Food and Pharmaceuticals Application in the Circular Bioeconomy: An Agro-Food Waste-to-Wealth Approach. WASTE AND BIOMASS VALORIZATION 2024; 15:5607-5637. [DOI: 10.1007/s12649-024-02452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/28/2024] [Indexed: 01/06/2025]
|
6
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
7
|
Narayanasamy A, Patel SKS, Singh N, Rohit MV, Lee JK. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers (Basel) 2024; 16:2227. [PMID: 39125253 PMCID: PMC11314723 DOI: 10.3390/polym16152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future.
Collapse
Affiliation(s)
- Anand Narayanasamy
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Neha Singh
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - M. V. Rohit
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Corti Monzón G, Bertola G, Herrera Seitz MK, Murialdo SE. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation 2024; 35:519-538. [PMID: 38310580 DOI: 10.1007/s10532-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Environmental pollution caused by petrochemical hydrocarbons (HC) and plastic waste is a pressing global challenge. However, there is a promising solution in the form of bacteria that possess the ability to degrade HC, making them valuable tools for remediating contaminated environments and effluents. Moreover, some of these bacteria offer far-reaching potential beyond bioremediation, as they can also be utilized to produce polyhydroxyalkanoates (PHAs), a common type of bioplastics. The accumulation of PHAs in bacterial cells is facilitated in environments with high C/N or C/P ratio, which are often found in HC-contaminated environments and effluents. Consequently, some HC-degrading bacteria can be employed to simultaneously produce PHAs and conduct biodegradation processes. Although bacterial bioplastic production has been thoroughly studied, production costs are still too high compared to petroleum-derived plastics. This article aims to provide a comprehensive review of recent scientific advancements concerning the capacity of HC-degrading bacteria to produce PHAs. It will delve into the microbial strains involved and the types of bioplastics generated, as well as the primary pathways for HC biodegradation and PHAs production. In essence, we propose the potential utilization of HC-degrading bacteria as a versatile tool to tackle two major environmental challenges: HC pollution and the accumulation of plastic waste. Through a comprehensive analysis of strengths and weaknesses in this aspect, this review aims to pave the way for future research in this area, with the goal of facilitating and promoting investigation in a field where obtaining PHAs from HC remains a costly and challenging process.
Collapse
Affiliation(s)
- G Corti Monzón
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | - G Bertola
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - M K Herrera Seitz
- Instituto de Investigaciones Biológicas, IIB, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CIC, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
9
|
Rajeev A, Kansara K, Bhatia D. Navigating the challenges and exploring the perspectives associated with emerging novel biomaterials. Biomater Sci 2024; 12:3565-3581. [PMID: 38832912 DOI: 10.1039/d4bm00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The field of biomaterials is a continuously evolving interdisciplinary field encompassing biological sciences, materials sciences, chemical sciences, and physical sciences with a multitude of applications realized every year. However, different biomaterials developed for different applications have unique challenges in the form of biological barriers, and addressing these challenges simultaneously is also a challenge. Nevertheless, immense progress has been made through the development of novel materials with minimal adverse effects such as DNA nanostructures, specific synthesis strategies based on supramolecular chemistry, and modulating the shortcomings of existing biomaterials through effective functionalization techniques. This review discusses all these aspects of biomaterials, including the challenges at each level of their development and application, proposed countermeasures for these challenges, and some future directions that may have potential benefits.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Krupa Kansara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Dhiraj Bhatia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| |
Collapse
|
10
|
Ghorabe FDE, Aglikov A, Novikov AS, Nosonovsky M, Ryltseva GA, Dudaev AE, Menzianova NG, Skorb EV, Shishatskaya EI. Topography hierarchy of biocompatible polyhydroxyalkanoate film. RSC Adv 2024; 14:19603-19611. [PMID: 38895528 PMCID: PMC11184939 DOI: 10.1039/d4ra03398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are used for various biomedical applications due to their biocompatibility. Surface properties, such as surface roughness, are crucial for PHAs performance. Traditional parameters used for the characterization of surface roughness, such as R a, are often insufficient to capture the complex and hierarchical (multiscale) topography of PHA films. We measure the topography and surface roughness of thin PHA films with atomic force microscopy and analyze the topography data using several relatively novel data processing methods, including the calculation of autocorrelation functions, topological data analysis, and the distribution of minimum and maximum values of pixels over the topography data. The results provide details of multiscale and anisotropic surface properties that are crucial to PHAs biocompatibility but often overlooked by traditional topography analysis methods.
Collapse
Affiliation(s)
- Fares D E Ghorabe
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Aleksandr Aglikov
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Alexander S Novikov
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Michael Nosonovsky
- Mechanical Engineering, University of Wisconsin-Milwaukee 3200 N Cramer St. Milwaukee WI 53211 USA
| | - Galina A Ryltseva
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
| | - Alexey E Dudaev
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS" Akademgorodok, 50/50 660036 Krasnoyarsk Russia
| | - Natalia G Menzianova
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | | |
Collapse
|
11
|
Guennec A, Balnois E, Augias A, Bangoura MA, Jaffry C, Simon-Colin C, Langlois V, Azemar F, Vignaud G, Linossier I, Faÿ F, Vallée-Réhel K. Investigating the anti-bioadhesion properties of short, medium chain length, and amphiphilic polyhydroxyalkanoate films. BIOFOULING 2024; 40:177-192. [PMID: 38465991 DOI: 10.1080/08927014.2024.2326038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Silicone materials are widely used in fouling release coatings, but developing eco-friendly protection via biosourced coatings, such as polyhydroxyalcanoates (PHA) presents a major challenge. Anti-bioadhesion properties of medium chain length PHA and short chain length PHA films are studied and compared with a reference Polydimethylsiloxane coating. The results highlight the best capability of the soft and low-roughness PHA-mcl films to resist bacteria or diatoms adsorption as compared to neat PDMS and PHBHV coatings. These parameters are insufficient to explain all the results and other properties related to PHA crystallinity are discussed. Moreover, the addition of a low amount of PEG copolymers within the coatings, to create amphiphilic coatings, boosts their anti-adhesive properties. This work reveals the importance of the physical or chemical ambiguity of surfaces in their anti-adhesive effectiveness and highlights the potential of PHA-mcl film to resist the primary adhesion of microorganisms.
Collapse
Affiliation(s)
- Alexandra Guennec
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Eric Balnois
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université de Brest, Quimper, France
| | - Antoine Augias
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Mama Aïssata Bangoura
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Cédric Jaffry
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | - Christelle Simon-Colin
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Brest, IFREMER, CNRS, UMR BEEP 6197, Plouzané, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est (ICPME), Université Paris Est Créteil, UMR-CNRS 7182, Thiais, France
| | - Fabrice Azemar
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Guillaume Vignaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | - Isabelle Linossier
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Fabienne Faÿ
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Karine Vallée-Réhel
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| |
Collapse
|
12
|
Lezcano MF, Martínez-Rodríguez P, Godoy K, Hermosilla J, Acevedo F, Gareis IE, Dias FJ. Exploring Schwann Cell Behavior on Electrospun Polyhydroxybutyrate Scaffolds with Varied Pore Sizes and Fiber Thicknesses: Implications for Neural Tissue Engineering. Polymers (Basel) 2023; 15:4625. [PMID: 38139877 PMCID: PMC10748293 DOI: 10.3390/polym15244625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
The placement of a polymeric electrospun scaffold is among the most promising strategies to improve nerve regeneration after critical neurotmesis. It is of great interest to investigate the effect of these structures on Schwann cells (SCs), as these cells lead nerve regeneration and functional recovery. The aim of this study was to assess SC viability and morphology when cultured on polyhydroxybutyrate (PHB) electrospun scaffolds with varied microfiber thicknesses and pore sizes. Six electrospun scaffolds were obtained using different PHB solutions and electrospinning parameters. All the scaffolds were morphologically characterized in terms of fiber thickness, pore size, and overall appearance by analyzing their SEM images. SCs seeded onto the scaffolds were analyzed in terms of viability and morphology throughout the culture period through MTT assay and SEM imaging. The SCs were cultured on three scaffolds with homogeneous smooth fibers (fiber thicknesses: 2.4 μm, 3.1 μm, and 4.3 μm; pore sizes: 16.7 μm, 22.4 μm, and 27.8 μm). SC infiltration and adhesion resulted in the formation of a three-dimensional network composed of intertwined fibers and cells. The SCs attached to the scaffolds maintained their characteristic shape and size throughout the culture period. Bigger pores and thicker fibers resulted in higher SC viability.
Collapse
Affiliation(s)
- María Florencia Lezcano
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina (I.E.G.)
| | - Paulina Martínez-Rodríguez
- Oral Biology Research Centre (CIBO-UFRO), Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| | - Karina Godoy
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Jeyson Hermosilla
- Programa de doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Center of Excellence in Translational Medicine (CEMT), Faculty of Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine (CEMT), Faculty of Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Iván Emilio Gareis
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina (I.E.G.)
| | - Fernando José Dias
- Oral Biology Research Centre (CIBO-UFRO), Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
13
|
Tubio CR, Valle X, Carvalho E, Moreira J, Costa P, Correia DM, Lanceros-Mendez S. Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Blends with Poly(caprolactone) and Poly(lactic acid): A Comparative Study. Polymers (Basel) 2023; 15:4566. [PMID: 38232003 PMCID: PMC10708000 DOI: 10.3390/polym15234566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(hydroxybutyrate-co-hidroxyvalerate) (PHBV) is a biodegradable polymer, which is a potential substitute for plastics made from fossil resources. Due to its practical interest in the field of tissue engineering, packaging, sensors, and electronic devices, the demand for PHBV with specific thermal, electrical, as well as mechanical requirements is growing. In order to improve these properties, we have developed PHBV blends with two thermoplastic biodegradable polyesters, including poly(caprolactone) (PCL) and poly(lactic acid) (PLA). We analysed the effect of these biopolymers on the morphological, wetting, structural, thermal, mechanical, and electrical characteristics of the materials. Further, the biodegradation of the samples in simulated body fluid conditions was evaluated, as well as the antibacterial activity. The results demonstrate that the blending with PCL and PLA leads to films with a dense morphology, increases the hydrophilic character, and induces a reinforcement of the mechanical characteristics with respect to pristine PHBV. In addition, a decrease in dielectric constant and a.c. electrical conductivity was noticed for PHBV/PLA and PHBV/PCL blends compared to neat PHBV polymer. All neat polymers and blends showed antibacterial properties against S. aureus, with more than 40% bacterial reduction, which increased to 72% in the presence of PCL polymer for a blend ratio of 50/50. Thus, it is demonstrated a suitable way to further tailor a variety of functionalities of PHBV for specific applications, by the development of polymer blends with PLA or PCL.
Collapse
Affiliation(s)
- Carmen R. Tubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (X.V.); (S.L.-M.)
| | - Xabier Valle
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (X.V.); (S.L.-M.)
| | - Estela Carvalho
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Joana Moreira
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
| | | | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (X.V.); (S.L.-M.)
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
14
|
Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023; 14:1131057. [PMID: 36817419 PMCID: PMC9935699 DOI: 10.3389/fimmu.2023.1131057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Nivethika Sivakumaran
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Anjali Kakkanat
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| |
Collapse
|
15
|
Yang JC, Yang J, Zhang TY, Li XJ, Lu XB, Liu Y. Toughening Poly(3-hydroxybutyrate) by Using Catalytic Carbonylative Terpolymerization of Epoxides. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jin-Chuang Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tie-Ying Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin-Jun Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|