1
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
2
|
Salim ET, Saimon JA, Muhsin MS, Fakhri MA, Amin MH, Azzahrani AS, Ibrahim RK. Mesoporous Ag@WO 3 core-shell, an investigation at different concentrated environment employing laser ablation in liquid. Sci Rep 2024; 14:5473. [PMID: 38443371 PMCID: PMC10914857 DOI: 10.1038/s41598-024-55146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, silver-tungsten oxide core-shell nanoparticles (Ag-WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag-WO3 core-shell NPs were subjected to characterization using UV-visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV-visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon resonance of Ag NPs and WO3 NPs, respectively. The absorbance values of the Ag-WO3 core-shell NPs increased as the core concentrations rose, while the band gap decreased by 2.73-2.5 eV, The (PL) results exhibited prominent peaks with a central wavelength of 456, 458, 458, 464, and 466 nm. Additionally, the PL intensity of the Ag-WO3-NP samples increased proportionally with the concentration of the core. Furthermore, the redshift seen at the peak of the PL emission band may be attributed to the quantum confinement effect. EDX analysis can verify the creation process of the Ag-WO3 core-shell nanostructure. XRD analysis confirms the presence of Ag and WO3 (NPs). The TEM images provided a good visualization of the core-spherical shell structure of the Ag-WO3 core-shell NPs. The average size of the particles ranged from 30.5 to 89 (nm). The electrical characteristics showed an increase in electrical conductivity from (5.89 × 10-4) (Ω cm)-1 to (9.91 × 10-4) (Ω cm)-1, with a drop in average activation energy values of (0.155 eV) and (0.084 eV) at a concentration of 1.6 μg/mL of silver.
Collapse
Affiliation(s)
- Evan T Salim
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Jehan A Saimon
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq
| | - Maryam S Muhsin
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq
| | - Makram A Fakhri
- Laser and Optoelectronic Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Mustafa H Amin
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
| | - Ahmad S Azzahrani
- Electrical Engineering Department, Northern Border University, Arar, Saudi Arabia.
| | | |
Collapse
|
3
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Matyszczak G, Jóźwik P, Zybert M, Yedzikhanau A, Krawczyk K. Dye-Modified, Sonochemically Obtained Nano-SnS 2 as an Efficient Photocatalyst for Metanil Yellow Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5774. [PMID: 37687465 PMCID: PMC10488508 DOI: 10.3390/ma16175774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023]
Abstract
We investigate the possibility of modification of SnS2 powder through sonochemical synthesis with the addition of an organic ligand. For that purpose, two organic dyes are used, Phenol Red and Anthraquinone Violet. All obtained powders are characterized using XRD, SEM, EDX, FT-IR, and UV-Vis investigations. Synthesized samples showed composition and structural properties typical for sonochemically synthesized SnS2. However, investigation with the Tauc method revealed that SnS2 powder modified with Phenol Red exhibits a significant shift in value of optical bandgap to 2.56 eV, while unmodified SnS2 shows an optical bandgap value of 2.42 eV. The modification of SnS2 powder with Anthraquinone Violet was unsuccessful. The obtained nanopowders were utilized as photocatalysts in the process of Metanil Yellow degradation, revealing that SnS2 modified with Phenol Red shows about 23% better performance than the unmodified one. The mean sonochemical efficiency of the performed synthesis is also estimated as 9.35 µg/W.
Collapse
Affiliation(s)
- Grzegorz Matyszczak
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Paweł Jóźwik
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. Sylwester Kaliski Street 2, 00-908 Warsaw, Poland
| | - Magdalena Zybert
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Albert Yedzikhanau
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Krzysztof Krawczyk
- Department of Chemical Technology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| |
Collapse
|
5
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
6
|
Liu Q, Xu M, Meng Y, Chen S, Yang S. Magnetic CoFe 1.95Y 0.05O 4-Decorated Ag 3PO 4 as Superior and Recyclable Photocatalyst for Dye Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4659. [PMID: 37444973 DOI: 10.3390/ma16134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The Ag3PO4/CoFe1.95Y0.05O4 nanocomposite with magnetic properties was simply synthesized by the hydrothermal method. The structure and morphology of the prepared material were characterized, and its photocatalytic activity for degradation of the methylene blue and rhodamine B dyes was also tested. It was revealed that the Ag3PO4 in the nanocomposite exhibited a smaller size and higher efficiency in degrading dyes than the individually synthesized Ag3PO4 when exposed to light. Furthermore, the magnetic properties of CoFe1.95Y0.05O4 enabled the nanocomposite to possess magnetic separation capabilities. The stable crystal structure and effective degradation ability of the nanocomposite were demonstrated through cyclic degradation experiments. It was shown that Ag3PO4/CoFe1.95Y0.05O4-0.2 could deliver the highest activity and stability in degrading the dyes, and 98% of the dyes could be reduced within 30 min. Additionally, the photocatalytic enhancement mechanism and cyclic degradation stability of the magnetic nanocomposites were also proposed.
Collapse
Affiliation(s)
- Qingwang Liu
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Mai Xu
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Ying Meng
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Shikun Chen
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Shiliu Yang
- School of Chemistry and Materials Engineering, New Energy Materials and Technology Research Center, Huainan Research Center of New Carbon Energy Materials, Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
7
|
Liu Z, Shan C, Wei G, Wen J, Jiang L, Hu G, Fang Z, Tang T, Li M. A Novel Non-Metallic Photocatalyst: Phosphorus-Doped Sulfur Quantum Dots. Molecules 2023; 28:molecules28083637. [PMID: 37110871 PMCID: PMC10141183 DOI: 10.3390/molecules28083637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, a novel phosphorus-doped sulfur quantum dots (P-SQDs) material was prepared using a simple hydrothermal method. P-SQDs have a narrow particle size distribution as well as an excellent electron transfer rate and optical properties. Compositing P-SQDs with graphitic carbon nitride (g-C3N4) can be used for photocatalytic degradation of organic dyes under visible light. More active sites, a narrower band gap, and stronger photocurrent are obtained after introducing P-SQDs into g-C3N4, thus promoting its photocatalytic efficiency by as much as 3.9 times. The excellent photocatalytic activity and reusability of P-SQDs/g-C3N4 are prospective signs of its photocatalytic application under visible light.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Chuanfu Shan
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guiyu Wei
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianfeng Wen
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Li Jiang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guanghui Hu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Zhijie Fang
- School of Electronics Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Tao Tang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Kumari P, Saha R, Saikia G, Bhujel A, Choudhury MG, Jagdale P, Paul S. Synthesis of Mixed-Phase TiO 2-ZrO 2 Nanocomposite for Photocatalytic Wastewater Treatment. TOXICS 2023; 11:234. [PMID: 36976999 PMCID: PMC10051327 DOI: 10.3390/toxics11030234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band gap. In this work, three nanoparticles were synthesized: (i) TiO2 nanoparticle was synthesized by a sol-gel process. (ii) ZrO2 was prepared using a solution combustion process and (iii) mixed-phase TiO2-ZrO2 nanoparticles were synthesized by a sol-gel process to remove Eosin Yellow (EY) from aqueous solutions in the wastewater. XRD, FTIR, UV-VIS, TEM, and XPS analysis methods were used to examine the properties of the synthesized products. The XRD investigation supported the tetragonal and monoclinic crystal structures of the TiO2 and ZrO2 nanoparticles. TEM studies identified that mixed-phase TiO2-ZrO2 nanoparticles have the same tetragonal structure as pure mixed-phase. The degradation of Eosin Yellow (EY) was examined using TiO2, ZrO2, and mixed-phase TiO2-ZrO2 nanoparticles under visible light. The results confirmed that the mixed-phase TiO2-ZrO2nanoparticles show a higher level of photocatalytic activity, and the process is accomplished at a high degradation rate in lesser time and at a lower power intensity.
Collapse
Affiliation(s)
- Pooja Kumari
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Rajib Saha
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Gaurav Saikia
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Aditya Bhujel
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Mahua Gupta Choudhury
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Pravin Jagdale
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Samrat Paul
- Advanced Materials Research and Energy Application Laboratory (AMREAL), Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
9
|
Muşat V, Crintea (Căpăţână) L, Anghel EM, Stănică N, Atkinson I, Culiţă DC, Baroiu L, Țigău N, Cantaragiu Ceoromila A, Botezatu (Dediu) AV, Carp O. Ag-Decorated Iron Oxides-Silica Magnetic Nanocomposites with Antimicrobial and Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4452. [PMID: 36558305 PMCID: PMC9783173 DOI: 10.3390/nano12244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology offers unlimited possibilities for creating effective hybrid materials, which combine functional performance in environment depollution and antimicrobial defense with a lack of toxicity, biocompatibility, biodegradability, and natural availability. This paper presents the silver effect on photocatalytic and antibacterial activities of double-coated iron oxide nanoparticles (NPs), Fe3O4@SiO2/ZnO-Ag. The structural, morphological, and textural information of the, core-shell iron oxides-based superparamagnetic nanoparticles (IOMNPs) decorated with 5% Ag by ultrasound-assisted synthesis were evaluated by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDX), X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller physisorption measurements. Although two synthesis temperatures of 95 and 80 °C were used for the co-precipitated iron oxide cores, the XRD patterns revealed the formation of a single magnetite, Fe3O4, phase. The sorption-photocatalytic activities under dark and UV irradiation encountered a maximum removal efficiency of the MB (90.47%) for the Fe3O4@SiO2/ZnO-Ag sample with iron oxide core obtained at 80 °C. The rate constant for the second-order kinetics was 0.0711 min-1 for 2 h, and the correlation coefficient R2 closed to unity. Two samples with Ag-decorated hybrid SiO2/ZnO shell and hierarchically interconnected porous structure with large surface area (328.8 and 342.5 m2g-1) exhibited the best disk diffusion antimicrobial activity against four microorganisms, especially gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Viorica Muşat
- Laboratory of Chemical Nanotechnologies-Center of Nanostructures and Functional Materials LNC-CNMF, Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Lenuța Crintea (Căpăţână)
- Laboratory of Chemical Nanotechnologies-Center of Nanostructures and Functional Materials LNC-CNMF, Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Elena-Maria Anghel
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Nicolae Stănică
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Daniela Cristina Culiţă
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| | - Liliana Baroiu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Nicolae Țigău
- Department of Physical-Chemistry and Environment, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Alina Cantaragiu Ceoromila
- Department of Applied Sciences, Cross-Border Faculty, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Andreea-Veronica Botezatu (Dediu)
- Department of Physical-Chemistry and Environment, “Dunărea de Jos” University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Oana Carp
- Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independenţei 202, 060021 Bucharest, Romania
| |
Collapse
|
10
|
Spassky D, Vasil’ev A, Nagirnyi V, Kudryavtseva I, Deyneko D, Nikiforov I, Kondratyev I, Zadneprovski B. Bright UV-C Phosphors with Excellent Thermal Stability-Y 1-xSc xPO 4 Solid Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6844. [PMID: 36234185 PMCID: PMC9571669 DOI: 10.3390/ma15196844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The structural and luminescence properties of undoped Y1-xScxPO4 solid solutions have been studied. An intense thermally stable emission with fast decay (τ1/e ~ 10-7 s) and a band position varying from 5.21 to 5.94 eV depending on the Sc/Y ratio is detected and ascribed to the 2p O-3d Sc self-trapped excitons. The quantum yield of the UV-C emission, also depending on the Sc/Y ratio, reaches 34% for the solid solution with x = 0.5 at 300 K. It is shown by a combined analysis of theoretical and experimental data that the formation of Sc clusters occurs in the solid solutions studied. The clusters facilitate the creation of energy wells at the conduction band bottom, which enables deep localization of electronic excitations and the creation of luminescence centers characterized by high quantum yield and thermal stability of the UV-C emission.
Collapse
Affiliation(s)
- Dmitry Spassky
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskiye Gory 1-2, 119991 Moscow, Russia
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Andrey Vasil’ev
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskiye Gory 1-2, 119991 Moscow, Russia
| | - Vitali Nagirnyi
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Irina Kudryavtseva
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Dina Deyneko
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia
| | - Ivan Nikiforov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Ildar Kondratyev
- Physics Department, Lomonosov Moscow State University, Leninskiye Gory 1-2, 119991 Moscow, Russia
| | - Boris Zadneprovski
- All-Russian Research Institute for Synthesis of Materials, Institutskaya Street 1, 601600 Alexandrov, Russia
| |
Collapse
|
11
|
Ibrahim I, Belessiotis GV, Elseman AM, Mohamed MM, Ren Y, Salama TM, Mohamed MBI. Magnetic TiO 2/CoFe 2O 4 Photocatalysts for Degradation of Organic Dyes and Pharmaceuticals without Oxidants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193290. [PMID: 36234418 PMCID: PMC9565403 DOI: 10.3390/nano12193290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 05/14/2023]
Abstract
In the current study, CoFe2O4 and TiO2 nanoparticles were primarily made using the sol-gel method, and subsequently, the hybrid magnetic composites of TiO2 loaded with CoFe2O4 (5-15 percent w/w) were made using a hydrothermal procedure. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) were all used to thoroughly characterize the materials. Additionally, the zero-charge point (ZCP) determination, the examination of the pore structure by nitrogen adsorption, and an evaluation of magnetic properties were performed. Six organic dye pollutants were selected to evaluate the performance of the synthesized nanocomposites toward photocatalytic degradation, including methylene blue (MB), methyl orange (MO), crystal violet (CV), acridine orange (AO), rhodamine B (RhB), and rhodamine 6G (R-6G). Photodegradation of tetracycline (TL), a model pharmaceutical pollutant, was also studied under UV and visible light. The composites exhibited a high degradation performance in all cases without using any oxidants. The photocatalytic degradation of tetracycline revealed that the CoFe2O4/TiO2 (5% w/w) composite exhibited a higher photocatalytic activity than either pure TiO2 or CoFe2O4, and thus attained 75.31% and 50.4% degradation efficiency under UV and visible light, respectively. Trapping experiments were conducted to investigate the photodegradation mechanism, which revealed that holes and super oxide radicals were the most active species in the photodegradation process. Finally, due to the inherent magnetic attributes of the composites, their easy removal from the treated solution via a simple magnet became possible.
Collapse
Affiliation(s)
- Islam Ibrahim
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (I.I.); (Y.R.)
| | - George V. Belessiotis
- Chemical Engineering Department, National Technical University of Athens NTUA, 15780 Athens, Greece
| | - Ahmed Mourtada Elseman
- Electronic and Magnetic Materials Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute, Cairo 11421, Egypt
| | - Mohamed Mokhtar Mohamed
- Egypt-Japan University of Science and Technology, Borg El Arab, Alexandria 21934, Egypt
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Yatao Ren
- Harbin Institute of Technology, School of Energy Science and Engineering, Harbin, China
- Faculty of Engineering, University of Nottingham, University Park, Nottingham, UK
- Correspondence: (I.I.); (Y.R.)
| | - Tarek M. Salama
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | | |
Collapse
|
12
|
Bobik M, Korus I, Synoradzki K, Wojnarowicz J, Biniaś D, Biniaś W. Poly(sodium acrylate)-Modified Magnetite Nanoparticles for Separation of Heavy Metals from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6562. [PMID: 36233904 PMCID: PMC9572998 DOI: 10.3390/ma15196562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Two types of magnetite nanoparticles: unmodified (Fe3O4 NPs), and modified with poly(sodium acrylate) (Fe3O4/PSA NPs) were synthesized by the co-precipitation method and characterized using different techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Brunauer-Emmett-Teller (BET) adsorption, Fourier-transform infrared spectroscopy (FTIR). Additionally, magnetic properties and the effect of pH on the zeta potential were analyzed for both types of nanoparticles. Magnetites were used as adsorbents for seven heavy metal ions (Zn(II), Cu(II), Ni(II), Cd(II), Pb(II), Cr(III), Cr(VI)) within the pH range of 3-7. Research revealed nanometric particle sizes, a specific surface area of 140-145 m2/g, and superparamagnetic properties of both tested materials. Moreover, the presence of PSA functional groups in modified magnetite was confirmed, which lowered the pH of the isoelectric point. Both types of magnetite were effective metal ion adsorbents, with metal cations more effectively removed on Fe3O4/PSA NPs and Cr(VI) anions on Fe3O4 NPs. The adsorption of most of the examined cations (performed at pH = 5) can be well described by the Langmuir isotherm model, whereas the adsorption of Cr(VI) ions on modified magnetite correlated better with the Freundlich model. The Dubinin-Radushkevich model confirmed that chemisorption is the predominant process. The adsorption of all metal ions was well-characterized by the pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Magdalena Bobik
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Irena Korus
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Dorota Biniaś
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| | - Włodzimierz Biniaś
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| |
Collapse
|