1
|
Li B, Min BW, Gu H, Jiang J, Zhang J, Zhang H. Surface Quality and Compressive Properties of Mortise and Tenon Lattice Structures Fabricated by Fused Deposition Modeling. MATERIALS (BASEL, SWITZERLAND) 2025; 18:628. [PMID: 39942294 PMCID: PMC11818364 DOI: 10.3390/ma18030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
To address the anisotropy of mechanical properties and the challenge of removing support materials in lattice structures fabricated using fused deposition modeling (FDM), this study is inspired by traditional woodworking mortise and tenon joints. A hexagonal interlocking mortise lattice structure was designed, and mortise and tenon lattice structures (MTLSs) with various parameters were fabricated. Compared with the traditional integrated forming lattice structure (IFLS), the MTLS exhibits maximum reductions in side surface roughness (Ra), printing time, and material consumption of 74.87%, 25.55%, and 52.21%, respectively. In addition to enhancing surface quality and printing efficiency, the MTLS also exhibited superior mechanical properties. The uniaxial compression test results show that the specific strength, energy absorption (EA), and specific energy absorption (SEA) of the MTLS exhibit maximum increases of 51.22%, 894.59%, and 888.39%, respectively, compared with the IFLS. Moreover, the effects of strut angle and thickness on the lattice structure were analyzed. Smaller strut angles and larger strut thicknesses endowed greater strength, while smaller angles contributed to higher energy absorption. This study proposes a novel approach for designing lattice structures in additive manufacturing.
Collapse
Affiliation(s)
- Bin Li
- School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China; (B.L.); (J.J.); (J.Z.); (H.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Application Technology, Nantong Institute of Technology, Nantong 226002, China
- Division of Information and Communication Convergence Engineering, Mokwon University, Daejeon 35349, Republic of Korea;
| | - Byung-Won Min
- Division of Information and Communication Convergence Engineering, Mokwon University, Daejeon 35349, Republic of Korea;
| | - Hai Gu
- School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China; (B.L.); (J.J.); (J.Z.); (H.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Application Technology, Nantong Institute of Technology, Nantong 226002, China
| | - Jie Jiang
- School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China; (B.L.); (J.J.); (J.Z.); (H.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Application Technology, Nantong Institute of Technology, Nantong 226002, China
| | - Jie Zhang
- School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China; (B.L.); (J.J.); (J.Z.); (H.Z.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Application Technology, Nantong Institute of Technology, Nantong 226002, China
- Division of Information and Communication Convergence Engineering, Mokwon University, Daejeon 35349, Republic of Korea;
| | - Hao Zhang
- School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China; (B.L.); (J.J.); (J.Z.); (H.Z.)
| |
Collapse
|
2
|
Zhang Y, Sun B, Zhao L, Yang G. Design and Manufacturing of a Novel Trabecular Tibial Implant. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4720. [PMID: 37445036 DOI: 10.3390/ma16134720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The elastic modulus of traditional solid titanium alloy tibial implants is much higher than that of human bones, which can cause stress shielding. Designing them as a porous structure to form a bone-like trabecular structure effectively reduces stress shielding. However, the actual loading conditions of bones in different parts of the human body have not been considered for some trabecular structures, and their mechanical properties have not been considered concerning the personalized differences of other patients. Therefore, based on the elastic modulus of the tibial stem obtained from Quantitative Computed Tomography (QCT) imaging between 3.031 and10.528 GPa, and the load-bearing state of the tibia at the knee joint, a porous structure was designed under compressive and shear loading modes using topology optimization. Through comprehensive analysis of the mechanical and permeability properties of the porous structure, the results show that the Topology Optimization-Shear-2 (TO-S2) structure has the best compressive, shear mechanical properties and permeability and is suitable as a trabecular structure for tibial implants. The Gibson-Ashby model was established to control the mechanical properties of porous titanium alloy. A gradient filling of porous titanium alloy with a strut diameter of 0.106-0.202 mm was performed on the tibial stem based on the elastic modulus range, achieving precise matching of the mechanical properties of tibial implants and closer to the natural structure than uniformly distributed porous structures in human bones. Finally, the new tibial implant was printed by selective laser melting (SLM), and the molding effect was excellent.
Collapse
Affiliation(s)
- Yongdi Zhang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Baoyu Sun
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lisong Zhao
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guang Yang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
3
|
Salaha ZFM, Ammarullah MI, Abdullah NNAA, Aziz AUA, Gan HS, Abdullah AH, Abdul Kadir MR, Ramlee MH. Biomechanical Effects of the Porous Structure of Gyroid and Voronoi Hip Implants: A Finite Element Analysis Using an Experimentally Validated Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093298. [PMID: 37176180 PMCID: PMC10179376 DOI: 10.3390/ma16093298] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Total hip arthroplasty (THA) is most likely one of the most successful surgical procedures in medicine. It is estimated that three in four patients live beyond the first post-operative year, so appropriate surgery is needed to alleviate an otherwise long-standing suboptimal functional level. However, research has shown that during a complete THA procedure, a solid hip implant inserted in the femur can damage the main arterial supply of the cortex and damage the medullary space, leading to cortical bone resorption. Therefore, this study aimed to design a porous hip implant with a focus on providing more space for better osteointegration, improving the medullary revascularisation and blood circulation of patients. Based on a review of the literature, a lightweight implant design was developed by applying topology optimisation and changing the materials of the implant. Gyroid and Voronoi lattice structures and a solid hip implant (as a control) were designed. In total, three designs of hip implants were constructed by using SolidWorks and nTopology software version 2.31. Point loads were applied at the x, y and z-axis to imitate the stance phase condition. The forces represented were x = 320 N, y = -170 N, and z = -2850 N. The materials that were used in this study were titanium alloys. All of the designs were then simulated by using Marc Mentat software version 2020 (MSC Software Corporation, Munich, Germany) via a finite element method. Analysis of the study on topology optimisation demonstrated that the Voronoi lattice structure yielded the lowest von Mises stress and displacement values, at 313.96 MPa and 1.50 mm, respectively, with titanium alloys as the materials. The results also indicate that porous hip implants have the potential to be implemented for hip implant replacement, whereby the mechanical integrity is still preserved. This result will not only help orthopaedic surgeons to justify the design choices, but could also provide new insights for future studies in biomechanics.
Collapse
Affiliation(s)
- Zatul Faqihah Mohd Salaha
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
| | - Nik Nur Ain Azrin Abdullah
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Aishah Umairah Abd Aziz
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Hong-Seng Gan
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215400, China
| | - Abdul Halim Abdullah
- School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Medical Devices and Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Muhammad Hanif Ramlee
- Bone Biomechanics Laboratory (BBL), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
4
|
Ammarullah MI, Hartono R, Supriyono T, Santoso G, Sugiharto S, Permana MS. Polycrystalline Diamond as a Potential Material for the Hard-on-Hard Bearing of Total Hip Prosthesis: Von Mises Stress Analysis. Biomedicines 2023; 11:951. [PMID: 36979930 PMCID: PMC10045939 DOI: 10.3390/biomedicines11030951] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Due to polymeric wear debris causing osteolysis from polymer, metal ions causing metallosis from metal, and brittle characteristic causing fracture failure from ceramic in the application on bearing of total hip prosthesis requires the availability of new material options as a solution to these problems. Polycrystalline diamond (PCD) has the potential to become the selected material for hard-on-hard bearing in view of its advantages in terms of mechanical properties and biocompatibility. The present study contributes to confirming the potential of PCD to replace metals and ceramics for hard-on-hard bearing through von Mises stress investigations. A computational simulation using a 2D axisymmetric finite element model of hard-on-hard bearing under gait loading has been performed. The percentage of maximum von Mises stress to respective yield strength from PCD-on-PCD is the lowest at 2.47%, with CoCrMo (cobalt chromium molybdenum)-on-CoCrMo at 10.79%, and Al2O3 (aluminium oxide)-on-Al2O3 at 13.49%. This confirms that the use of PCD as a hard-on-hard bearing material is the safest option compared to the investigated metal and ceramic hard-on-hard bearings from the mechanical perspective.
Collapse
Affiliation(s)
- Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| | - Rachmad Hartono
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| | - Toto Supriyono
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| | - Gatot Santoso
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| | - S. Sugiharto
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| | - Muki Satya Permana
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40153, West Java, Indonesia
- Biomechanics and Biomedics Engineering Research Centre, Universitas Pasundan, Bandung 40153, West Java, Indonesia
| |
Collapse
|
5
|
Zhao P, Huang D, Zhang Y, Zhang H, Chen W. Microstructure and Properties of Hollow Octet Nickel Lattice Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8417. [PMID: 36499912 PMCID: PMC9738681 DOI: 10.3390/ma15238417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
In this study, electroless nickel plating and electrodeposition were used to deposit thin films on the polymer lattice template prepared by 3D printing, then seven Octet hollow nickel lattice materials with different structural parameters were synthesized by etching process at the expense of the polymer backbone. The microstructure and properties of the Octet structure nickel lattice were characterized by X-ray diffraction, Electron backscattering diffraction and transmission electron microscopy. According to the results, the average grain size of the electrodeposition Ni lattice material was 429 nm, and (001) weak texture was found along the direction of the film deposition. The lattice deformation mode changed with the increase of the lattice length-to-diameter ratio, and it shifted from the lattice deformation layer-by-layer and the overall deformation to the shear deformation in the 45° direction. The strength, modulus and energy absorption properties of the Octet lattice increased with the density, and they were exponentially related to density. In the relative density range of 0.7~5%, Octet hollow Ni lattices with the same density conditions but different structural parameters showed similar compressive strength and elasticity modulus; the energy absorption capacity, however, was weakened as the length-to-diameter ratio increased.
Collapse
Affiliation(s)
- Peng Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Gaona Aero Material Co., Ltd., Beijing 100081, China
| | - Deqing Huang
- Gaona Aero Material Co., Ltd., Beijing 100081, China
- Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron & Steel Research Institute, Beijing 100081, China
| | - Yongfu Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongmei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weiwei Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|