1
|
An DH, Kang HC, Lim JW, Kim J, Lee H, Jeong JH, Park SM, Chung JW. Fabrication and Characterization of Biocompatible Multilayered Elastomer Hybrid with Enhanced Water Permeation Resistance for Packaging of Implantable Biomedical Devices. MICROMACHINES 2024; 15:1309. [PMID: 39597121 PMCID: PMC11596164 DOI: 10.3390/mi15111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
This study presents the synthesis and characterization of hexadecyl-modified SiO2 (HD-SiO2) nanoparticles and their application in the fabrication of a multilayered elastomer hybrid sheet to enhance water resistance in implantable biomedical devices. The surface modification of SiO2 nanoparticles was confirmed via FT-IR and TGA analyses, showing the successful grafting of hydrophobic hexadecyl groups. FE-SEM and DLS analyses revealed spherical HD-SiO2 nanoparticles with an average size of 360 nm. A multilayered elastomer hybrid sheet, consisting of a PDMS-based circuit-protecting body, a water resistance layer of HD-SiO2, a planarization layer, and a biocompatible layer of polydopamine, was fabricated and characterized. The water resistance layer exhibited superhydrophobic properties, with a water contact angle of 154.7° and a 27% reduction in water vapor transmission rate (WVTR) compared to the circuit-protecting body alone. The device packaged with both the circuit-protecting body and water resistance layer demonstrated a tenfold increase in operational lifespan in water medium compared to the device without the water resistance layer. Cytotoxicity and cell proliferation tests on human dermal fibroblast cells (HDFn) confirmed the biocompatibility of the multilayered sheet, with no significant cytotoxicity observed over 48 h.
Collapse
Affiliation(s)
- Dae Hyeok An
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.H.A.); (H.C.K.)
| | - Hee Cheol Kang
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.H.A.); (H.C.K.)
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (J.W.L.); (J.H.J.)
| | - Junho Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (J.K.); (S.-M.P.)
| | - Hojin Lee
- Department of Intelligent Semiconductors, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea;
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (J.W.L.); (J.H.J.)
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (J.K.); (S.-M.P.)
| | - Jae Woo Chung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.H.A.); (H.C.K.)
| |
Collapse
|
2
|
Abreu H, Lallukka M, Raineri D, Leigheb M, Ronga M, Cappellano G, Spriano S, Chiocchetti A. Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces. Front Bioeng Biotechnol 2024; 12:1458091. [PMID: 39439551 PMCID: PMC11493608 DOI: 10.3389/fbioe.2024.1458091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype. METHODS Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules. RESULTS While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion. DISCUSSION The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Rajaraman V, Ariga P, Ramalingam K, Sekaran S. Evaluation of Corrosive Properties of Hafnium Nitride Coating Over Titanium Screws: An In Vitro Study. Cureus 2024; 16:e55456. [PMID: 38571818 PMCID: PMC10990072 DOI: 10.7759/cureus.55456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024] Open
Abstract
Background Varied surface coatings have been studied time and again in medical sciences. Whether general or dental, studying the performance of coatings aims to assess their potential to improve the durability and longevity of titanium implants, thereby advancing implant technology for enhanced patient outcomes. Various analytical techniques are utilized to assess the performance of the coating, providing insights into its effectiveness in preventing corrosion. The findings of this evaluation will contribute to our understanding of corrosion mitigation strategies for titanium implants and pave the way for the development of more durable implant materials. This article aims to evaluate the corrosion resistance of an innovative metal compound coating applied over titanium implants. Materials and methods In this study, a total of 20 medical-grade, commercially pure titanium screws were collected. The dimensions of the titanium screws were 2mm x 7mm. Around 10 of these commercially pure titanium screw samples were used as the control group. Hafnium nitride (HfN) (0.1 M) was mixed with 100% ethanol and stirred using a glass rod for about 48 hours. Then 10 of the implant screw samples were immersed in the prepared sol and sintered at 400o C for two hours. The HfN-coated samples were then used as the test group. The corrosion resistance of both groups was tested using electrochemical impedance spectroscopy and potentiodynamic polarization studies. The Nyquist, Bode impedance, and Bode phase angle plots were obtained and studied. Results Using the Stern-Geary equation, the corrosion current density was calculated. On analysis, these values indicated that the higher impedance in HfN-coated titanium screws showed higher mean corrosion potential (Ecorr = -0.452 V) and corrosion current density ( icorr = 0.0354 μA/cm2) than the uncoated titanium screws. Conclusion It was concluded that the corrosion properties of HfN-coated titanium screws had higher impedance and consequently the highest corrosion resistance. This thereby provides a promising scope for further research of this novel metal coating for use in the biomedical sectors, specifically for dental implants.
Collapse
Affiliation(s)
- Vaishnavi Rajaraman
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Padma Ariga
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saravanan Sekaran
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|