1
|
Zhang F, Zhao D, Wu Y, Li L. Prenylated bacterial natural products: occurrence, chemical diversity, biosynthesis and bioactivity. Nat Prod Rep 2025. [PMID: 40370079 DOI: 10.1039/d5np00011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Covering: 2000 to 2024Prenylated bacterial natural products (NPs), catalyzed by cluster-situated prenyltransferases (PTs), exhibit large structural diversity and broad biological activities and have received increasing attention for novel drug discovery and development. This review provides a comprehensive summary of the recent progress in the investigation of prenylated bacterial NPs. To highlight the structural and chemical space of prenylated bacterial NPs, we discuss their occurrence, structures, biosynthesis and bioactivities. Representative examples are summarized with illustrations of PT-catalyzed biosynthetic pathways of distinct NP classes, which present new opportunities for the discovery of novel prenylated bacterial NPs. The mechanistic study of PTs involved in bacterial NP biosynthesis has been outlined, and prenylated bacterial NPs hold great promise as novel biocatalysts for the synthesis of novel drug leads in modern medicine.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Di Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuzhu Wu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Arch Microbiol 2021; 204:34. [PMID: 34927220 DOI: 10.1007/s00203-021-02698-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The discovery of new antimicrobials is the prime target in the fight against antimicrobial resistance. The continuous search for new lead compounds from bacteria of untapped and extreme ecosystems such as mangroves is currently being undertaken. This study describes the metabolite profiling of the Streptomyces euryhalinus culture extract. Previously, Streptomyces euryhalinus was isolated from the mangrove forest of Indian Sundarbans as a novel microorganism. The antimicrobial mechanism of action of Streptomyces euryhalinus culture extract against bacteria and fungi has been analyzed in this study. The gas chromatography-mass spectrometry profile of the ethyl acetate extract bacterial culture displayed the presence of several bioactive compounds with antibacterial, antifungal and antioxidant properties. The bacterial extract showed significant antimicrobial activity in terms of zone of inhibition, minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration. Moreover, substantial capacity to alter or damage the inner membrane as well as the outer membrane of the gram-positive and gram-negative bacteria was exhibited by the bacterial extract. This membrane alteration or damaging potential of the extract is the mechanism of action. Biofilm formation inhibition property of the extract also signified its antimicrobial action, and possible use against resistant bacteria. The extract has shown notable activity against the virulence factors like prevention of hemolysis in bacteria and inhibition of secreted aspartyl proteinase in fungi. These functions of the bacterial extract have revealed the extent of its action in the prevention of infection by terminating the secretory virulence factors and by damaging the tissue.
Collapse
|
3
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
4
|
Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Enantioselective Synthesis of 3-Fluorochromanes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2020; 59:15069-15075. [PMID: 32347605 PMCID: PMC7496101 DOI: 10.1002/anie.202005181] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 12/24/2022]
Abstract
The chromane nucleus is common to a plenum of bioactive small molecules where it is frequently oxidized at position 3. Motivated by the importance of this position in conferring efficacy, and the prominence of bioisosterism in drug discovery, an iodine(I)/iodine(III) catalysis strategy to access enantioenriched 3-fluorochromanes is disclosed (up to 7:93 e.r.). In situ generation of ArIF2 enables the direct fluorocyclization of allyl phenyl ethers to generate novel scaffolds that manifest the stereoelectronic gauche effect. Mechanistic interrogation using deuterated probes confirms a stereospecific process consistent with a type IIinv pathway.
Collapse
Affiliation(s)
- Jérôme C. Sarie
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Christian Thiehoff
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Jessica Neufeld
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
5
|
Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Enantioselektive Synthese von 3‐Fluorchromanen durch Iod(I)/Iod(III)‐Katalyse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jérôme C. Sarie
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Thiehoff
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Jessica Neufeld
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Ryan Gilmour
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
6
|
Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease. Scientometrics 2020. [DOI: 10.1007/s11192-020-03355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
|
8
|
Weng JY, Bu XL, He BB, Cheng Z, Xu J, Da LT, Xu MJ. Rational engineering of amide synthetase enables bioconversion to diverse xiamenmycin derivatives. Chem Commun (Camb) 2019; 55:14840-14843. [DOI: 10.1039/c9cc07826f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To improve the enzyme promiscuity, we engineered XimA by site-directed mutagenesis at a specific position based on our theoretical model.
Collapse
Affiliation(s)
- Jing-Yi Weng
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xu-Liang Bu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bei-Bei He
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhuo Cheng
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Shanghai Centre for Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
9
|
Abstract
This paper reviews naturally occurring cell adhesion inhibitors derived from a plant, microbial and marine origin. Plant-derived inhibitors are classified according to a type of structure. Microbially and marine-derived inhibitors were described according to age. In addition, effects of inhibitors on cell proliferation and that of standards on cell adhesion are listed as much as possible.
Collapse
Affiliation(s)
- Satoshi Takamatsu
- Division of Natural Medicine and Therapeutics, Department of Clinical Pharmacy, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
10
|
Wang S, Bilal M, Hu H, Wang W, Zhang X. 4-Hydroxybenzoic acid-a versatile platform intermediate for value-added compounds. Appl Microbiol Biotechnol 2018. [PMID: 29516141 DOI: 10.1007/s00253-018-8815-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
4-Hydroxybenzoic acid (4-HBA) has recently emerged as a promising intermediate for several value-added bioproducts with potential biotechnological applications in food, cosmetics, pharmacy, fungicides, etc. Over the past years, a variety of biosynthetic techniques have been developed for producing the 4-HBA and 4-HBA-based products. At this juncture, synthetic biology and metabolic engineering approaches enabled the biosynthesis of 4-HBA to address the increasing demand for high-value bioproducts. This review summarizes the biosynthesis of a variety of industrially pertinent compounds such as resveratrol, muconic acid, gastrodin, xiamenmycin, and vanillyl alcohol using 4-HBA as the starting feedstock. Moreover, potential research activities with a close-up look at the future perspectives to produce new compounds using 4-HBA have also been discussed.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
12
|
Yao YY, Liu XY, Li XY, Yang HG, Li L, Jiao XZ, Xie P. Total synthesis of xiamenmycin C and all of its stereoisomers: stereochemical revision. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:976-987. [PMID: 27256638 DOI: 10.1080/10286020.2016.1188808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Xiamenmycin C, a potent anti-fibrotic natural product, and all of its stereoisomers have been synthesized and their structures were fully characterized. Based on this study, the originally proposed structure of xiamenmycin C has been accordingly revised to be 2R,3S.
Collapse
Affiliation(s)
- Yang-Yang Yao
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| | - Xiao-Yu Liu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| | - Xiao-Yu Li
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| | - Hong-Guang Yang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| | - Li Li
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| | - Xiao-Zhen Jiao
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| | - Ping Xie
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica, Chinese Academy of Medical Science & Pecking Union Medical College , Beijing 100050 , China
| |
Collapse
|
13
|
Xu MJ, Chen YC, Xu J, Ao P, Zhu XM. Kinetic model of metabolic network for xiamenmycin biosynthetic optimisation. IET Syst Biol 2016; 10:17-22. [PMID: 26816395 PMCID: PMC8687290 DOI: 10.1049/iet-syb.2014.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Xiamenmycins, a series of prenylated benzopyran compounds with anti‐fibrotic bioactivities, were isolated from a mangrove‐derived Streptomyces xiamenensis. To fulfil the requirements of pharmaceutical investigations, a high production of xiamenmycin is needed. In this study,, the authors present a kinetic metabolic model to evaluate fluxes in an engineered Streptomyces lividans with xiamenmycin‐oriented genetic modification based on generic enzymatic rate equations and stability constraints. Lyapunov function was used for a viability optimisation. From their kinetic model, the flux distributions for the engineered S. lividans fed on glucose and glycerol as carbon sources were calculated. They found that if the bacterium can utilise glucose simultaneously with glycerol, xiamenmycin production can be enhanced by 40% theoretically, while maintaining the same growth rate. Glycerol may increase the flux for phosphoenolpyruvate synthesis without interfering citric acid cycle. They therefore believe this study demonstrates a possible new direction for bioengineering of S. lividans.
Collapse
Affiliation(s)
- Min-juan Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yong-cong Chen
- SmartWin Technology, 67 Tranmere Ave, Carnegie, VIC, Melbourne 3163, Australia
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Ao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Xiao-mei Zhu
- GeneMath, 5525 27th Ave. N.E., Seattle, WA 98105, USA
| |
Collapse
|
14
|
Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Sci Rep 2016; 6:18977. [PMID: 26744183 PMCID: PMC4705527 DOI: 10.1038/srep18977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyces. Based on the antiSMASH pipeline, a total of 21 gene clusters were predicted to be involved in secondary metabolism. The gene cluster responsible for the biosynthesis of xiamenmycin resides in a strain-specific 61,387-bp genomic island belonging to the left-arm region. A core metabolic network consisting of 104 reactions that supports xiamenmycin biosynthesis was constructed to illustrate the necessary precursors derived from the central metabolic pathway. In accordance with the finding of a putative ikarugamycin gene cluster in the genome, the targeted chemical profiling of polycyclic tetramate macrolactams (PTMs) resulted in the identification of ikarugamycin. A successful genome mining for bioactive molecules with different skeletons suggests that the naturally minimized genome of S. xiamenensis 318 could be used as a blueprint for constructing a chassis cell with versatile biosynthetic capabilities for the production of secondary metabolites.
Collapse
|
15
|
Jiao X, Yao Y, Yang B, Liu X, Li X, Yang H, Li L, Xu J, Xu M, Xie P. Total synthesis and stereochemical revision of xiamenmycin A. Org Biomol Chem 2016; 14:1805-13. [DOI: 10.1039/c5ob02476e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relative and absolute configurations of xiamenmycin A, a benzopyran compound isolated from Streptomyces xiamenensis 318 with a highly potent anti-fibrotic activity, have been characterized through the total synthesis.
Collapse
|
16
|
Xu MJ, Liu XJ, Xu J, Zhang ZG. New Anti-Fibrotic Drug Candidates from Mangrove-Derived Streptomyces xiamenensis Suppressing Local Inflammation and Mechanical Stress in Hypertrophic Scars. J Investig Dermatol Symp Proc 2015; 17:40-41. [PMID: 26067319 DOI: 10.1038/jidsymp.2015.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Min-Juan Xu
- 1] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China [2] Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Key Laboratory of Systems Biomedicine, Shanghai, China
| | - Xiao-Jin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
In vivo metabolism study of xiamenmycin A in mouse plasma by UPLC-QTOF-MS and LC-MS/MS. Mar Drugs 2015; 13:727-40. [PMID: 25636156 PMCID: PMC4344598 DOI: 10.3390/md13020727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/13/2015] [Indexed: 02/06/2023] Open
Abstract
Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of xiamenmycin A in mouse plasma was investigated by relative quantification. After two types of administration of xiamenmycin A at a single dose of 10 mg/kg, the plasma concentrations were measured quantitatively by LC-MS/MS. The dynamic changes in the xiamenmycin A concentration showed rapid absorption and quick elimination in plasma post-administration. Four metabolites (M1-M4) were identified in blood by UPLC-QTOF-MS, and xiamenmycin B (M3) is the principal metabolite in vivo, as verified by comparison of the authentic standard sample. The structures of other metabolites were identified based on the characteristics of their MS and MS/MS data. The newly identified metabolites are useful for understanding the metabolism of xiamenmycin A in vivo, aiming at the development of an anti-fibrotic drug candidate for the therapeutic treatment of excessive fibrotic diseases.
Collapse
|
18
|
Abstract
This review summarizes new findings concerning the sources and characteristics of various natural products that can be extracted from mangrove-associated microbes over the past three years (January 2011–December 2013).
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources
- Ministry of Education
- College of Material and Chemical Engineering
- Hainan University
- Haikou 570228
| |
Collapse
|
19
|
Ren Y, Deng CL, Wan WD, Zheng JH, Mao GY, Yang SL. Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation. Mol Med Rep 2014; 11:2471-6. [PMID: 25524174 PMCID: PMC4337479 DOI: 10.3892/mmr.2014.3115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/19/2014] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic scarring (HS) is a type of fibrosis that occurs in the skin, and is characterized by fibroblast activation and excessive collagen production. However, at present, therapeutic strategies for this condition are ineffective. Previous studies have identified that the mutual regulation of chronic inflammation, mechanical force and fibroblast activation leads to the formation of HS. Induced pluripotent stem cells (iPSCs) are novel bioengineered embryonic-like stem cells, initially created from mouse adult fibroblasts. The current study demonstrated that iPSC-conditioned medium (iPSC-CM) may significantly suppress hypertrophic scar fibroblast activation. It was observed that in the presence of iPSC-CM, the level of collagen I was markedly reduced and α-smooth muscle actin, a marker for myofibroblasts (activated fibroblasts that mediate mechanical force-induced HS formation), exhibited a significantly lower level of expression in human dermal fibroblasts (HDFs) activated with transforming growth factor-β1. Additionally, iPSC-CM attenuated the local inflammatory cell response by blocking the adhesion of human acute monocytic leukemia cell monocytes and fibroblasts in vitro. In addition, the contractile ability of HDFs may be reduced by iPSC-CM. These observations suggest that iPSC-CM may protect against processes leading to hypertrophic scarring by attenuating fibroblast activation, blocking inflammatory cell recruitment and adhesion and reducing the contractile ability of fibroblasts.
Collapse
Affiliation(s)
- Ye Ren
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chen-Liang Deng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei-Dong Wan
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jiang-Hong Zheng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guang-Yu Mao
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Song-Lin Yang
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
20
|
Yang Y, Fu L, Zhang J, Hu L, Xu M, Xu J. Characterization of the xiamenmycin biosynthesis gene cluster in Streptomyces xiamenensis 318. PLoS One 2014; 9:e99537. [PMID: 24919072 PMCID: PMC4053376 DOI: 10.1371/journal.pone.0099537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
Xiamenmycin (1) is a prenylated benzopyran derivative with anti-fibrotic activity. To investigate the genetic basis of xiamenmycin biosynthesis, we performed genome mining in the xiamenmycin-producing Streptomyces xiamenensis wild-type strain 318 to identify a candidate gene cluster. The complete gene cluster, consisting of five genes, was confirmed by a series of gene inactivations and heterologous expression. Based on bioinformatics analyses of each gene and feeding experiments, we found that the structure of an intermediate xiamenmycin B (3) accumulated in a ximA inactivation mutant, allowing us to propose a biosynthetic pathway. All five of the genes in the pathway were genetically and biochemically characterized. XimA was biochemically characterized as an ATP-dependent amide synthetase, catalyzing an amide bond formation in the presence of ATP as the final step in Xiamenmycin biosynthesis. The Km value of XimA was determined to be 474.38 µM for the substrate xiamenmycin B. These studies provide opportunities to use genetic and chemo-enzymatic methods to create new benzopyran derivatives as potential therapeutic agents.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences. & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Fu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences. & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlong Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences. & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linghan Hu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences. & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Minjuan Xu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (JX); (MX)
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences. & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of oceanology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (JX); (MX)
| |
Collapse
|
21
|
Xu DB, Ye WW, Han Y, Deng ZX, Hong K. Natural products from mangrove actinomycetes. Mar Drugs 2014; 12:2590-613. [PMID: 24798926 PMCID: PMC4052306 DOI: 10.3390/md12052590] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022] Open
Abstract
Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.
Collapse
Affiliation(s)
- Dong-Bo Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Wan-Wan Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ying Han
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zi-Xin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
23
|
Identification of Two Novel Anti-Fibrotic Benzopyran Compounds Produced by Engineered Strains Derived from Streptomyces xiamenensis M1-94P that Originated from Deep-Sea Sediments. Mar Drugs 2013. [DOI: 10.3390/md11104035 pmid: 241525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
You ZY, Wang YH, Zhang ZG, Xu MJ, Xie SJ, Han TS, Feng L, Li XG, Xu J. Identification of two novel anti-fibrotic benzopyran compounds produced by engineered strains derived from Streptomyces xiamenensis M1-94P that originated from deep-sea sediments. Mar Drugs 2013; 11:4035-49. [PMID: 24152563 PMCID: PMC3826148 DOI: 10.3390/md11104035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/16/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023] Open
Abstract
The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.
Collapse
Affiliation(s)
- Zhong-Yuan You
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: (Z.-Y.Y.); (T.-S.H.); (X.-G.L.)
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: (Y.-H.W.); (Z.-G.Z.)
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: (Y.-H.W.); (Z.-G.Z.)
| | - Min-Juan Xu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mail:
| | - Shu-Jie Xie
- Key Laboratory of Marine Biogenetic Resources, the Third Institute of Oceanography SOA, Xiamen 361005, Fujian, China; E-Mail:
| | - Tie-Sheng Han
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: (Z.-Y.Y.); (T.-S.H.); (X.-G.L.)
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mail:
| | - Xue-Gong Li
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: (Z.-Y.Y.); (T.-S.H.); (X.-G.L.)
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: (Z.-Y.Y.); (T.-S.H.); (X.-G.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-21-3420-7208; Fax: +86-21-3420-7205
| |
Collapse
|
25
|
Harnessing the potential of halogenated natural product biosynthesis by mangrove-derived actinomycetes. Mar Drugs 2013; 11:3875-90. [PMID: 24129229 PMCID: PMC3826140 DOI: 10.3390/md11103875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/30/2022] Open
Abstract
Mangrove-derived actinomycetes are promising sources of bioactive natural products. In this study, using homologous screening of the biosynthetic genes and anti-microorganism/tumor assaying, 163 strains of actinomycetes isolated from mangrove sediments were investigated for their potential to produce halogenated metabolites. The FADH2-dependent halogenase genes, identified in PCR-screening, were clustered in distinct clades in the phylogenetic analysis. The coexistence of either polyketide synthase (PKS) or nonribosomal peptide synthetase (NRPS) as the backbone synthetases in the strains harboring the halogenase indicated that these strains had the potential to produce structurally diversified antibiotics. As a validation, a new enduracidin producer, Streptomyces atrovirens MGR140, was identified and confirmed by gene disruption and HPLC analysis. Moreover, a putative ansamycin biosynthesis gene cluster was detected in Streptomyces albogriseolus MGR072. Our results highlight that combined genome mining is an efficient technique to tap promising sources of halogenated natural products synthesized by mangrove-derived actinomycetes.
Collapse
|
26
|
Yuan G, Hong K, Lin H, She Z, Li J. New azalomycin F analogs from mangrove Streptomyces sp. 211726 with activity against microbes and cancer cells. Mar Drugs 2013; 11:817-29. [PMID: 23481678 PMCID: PMC3705372 DOI: 10.3390/md11030817] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022] Open
Abstract
Seven new azalomycin F analogs (1-7) were isolated from the broth of mangrove Streptomyces sp. 211726, and respectively identified as 25-malonyl demalonylazalomycin F5a monoester (1), 23-valine demalonylazalomycin F5a ester (2), 23-(6-methyl)heptanoic acid demalonylazalomycins F3a ester (3), F4a ester (4) and F5a ester (5), 23-(9-methyl)decanoic acid demalonylazalomycin F4a ester (6) and 23-(10-methyl)undecanoic acid demalony lazalomycin F4a ester (7). Their structures were established by their spectroscopic data and by comparing with those of azalomycins F3a, F4a and F5a. Biological assays exhibited that 1-7 showed broad-spectrum antimicrobial and anti HCT-116 activities.
Collapse
Affiliation(s)
- Ganjun Yuan
- College of Bioscience and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; E-Mail:
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; E-Mail:
| | - Kui Hong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; E-Mail:
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Haipeng Lin
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; E-Mail:
| | - Zhigang She
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China; E-Mail:
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai 201203, China; E-Mail:
| |
Collapse
|
27
|
Xiamenmycin attenuates hypertrophic scars by suppressing local inflammation and the effects of mechanical stress. J Invest Dermatol 2013; 133:1351-60. [PMID: 23303451 DOI: 10.1038/jid.2012.486] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypertrophic scarring is a common disease affecting millions of people around the world, but there are currently no satisfactory drugs to treat the disease. Exaggerated inflammation and mechanical stress have been shown to be two main mechanisms of excessive fibrotic diseases. Here we found that a benzopyran natural product, xiamenmycin, could significantly attenuate hypertrophic scar formation in a mechanical stretch-induced mouse model. The compound suppressed local inflammation by reducing CD4+ lymphocyte and monocyte/macrophage retention in fibrotic foci and blocked fibroblast adhesion with monocytes. Both in vivo and in vitro studies found that the compound inhibited the mechanical stress-induced profibrotic effects by suppressing proliferation, activation, fibroblast contraction, and inactivating FAK, p38, and Rho guanosine triphosphatase signaling. Taken together, the compound could simultaneously suppress both the inflammatory and mechanical stress responses, which are the two pivotal pathological processes in hypertrophic scar formation, thus suggesting that xiamenmycin can serve as a potential agent for treating hypertrophic scar formation and other excessive fibrotic diseases.
Collapse
|
28
|
Zhang X, Sun Y, Bao J, He F, Xu X, Qi S. Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol Lett 2012; 336:122-30. [PMID: 22913347 DOI: 10.1111/j.1574-6968.2012.02662.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022] Open
Abstract
Most of our limited knowledge of microbes in corals comes from stony and soft corals; the microbial diversity of black corals is still poorly understood. Microbial diversity of the South China Sea black coral Antipathes dichotoma was investigated using a culture-dependent method followed by analysis of bacterial 16S rRNA gene and fungal internal transcribed spacer sequences. A total of 36 bacterial and 24 fungal isolates were recovered and identified, belonging to three bacterial phyla (Firmicutes, Actinobacteria and Alphaproteobacteria) and four fungal orders (Eurotiales, Hypocreales, Pleosporales and Botryosphaeriales). The high level microbial diversity of A. dichotoma is in accordance with previous studies on those of some stony and soft corals. However, the lack of bacterial Gammaproteobacteria phylum in A. dichotoma is in sharp contrast to the stony and soft corals, in which the Gammaproteobacteria phylum is relatively common and abundant. Antimicrobial activities of 21 bacterial and 10 fungal representative isolates (belonging to 21 different bacterial and 10 different fungal species, respectively) were tested against two marine pathogenic bacteria and two marine coral pathogenic fungi. A relatively high proportion (51.6%) of microbial isolates displayed distinct antibacterial and antifungal activities, suggesting that the black coral-associated microorganisms may aid their host in protection against marine pathogens. This is the first report on the diversity of culturable microorganisms associated with black coral. It contributes to our knowledge of black coral-associated microorganisms and further increases the pool of microorganisms available for natural bioactive product screening.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization/Guangdong Key Laboratory of Marine Material Medical/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|