1
|
Suhaimi N, Kumakubo R, Yoshino T, Maeda Y, Murata S, Tanaka T. Expansion of omega-3 polyunsaturated fatty acid metabolism of the oleaginous diatom Fistulifera solaris by genetic engineering. J Biosci Bioeng 2024; 138:105-110. [PMID: 38825559 DOI: 10.1016/j.jbiosc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) are widely used as additives in fish feed in the aquaculture sector. To date, the supply of omega-3 PUFAs have heavily depended upon fish oil production. As the need for omega-3 PUFAs supply for the growing population increases, a more sustainable approach is required to keep up with the demand. The oleaginous diatom Fistulifera solaris is known to synthesize EPA with the highest level among autotrophically cultured microalgae, however, this species does not accumulate significant amounts of DHA, which, in some cases, is required in aquaculture rather than EPA. This is likely due to the lack of expression of essential enzymes namely Δ5 elongase (Δ5ELO) and Δ4 desaturase. In this study, we identified endogenous Δ5ELO genes in F. solaris and introduced recombinant expression cassettes harboring Δ5ELO into F. solaris through bacterial conjugation. As a result, it managed to induce the synthesis of docosapentaenoic acid (DPA; C22:5n-3), a direct precursor of DHA. This study paves the way for expanding our understanding of the omega-3 PUFAs pathway using endogenous genes in the oleaginous diatom.
Collapse
Affiliation(s)
- Noraiza Suhaimi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Ryota Kumakubo
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Dubey S, Chen CW, Patel AK, Bhatia SK, Singhania RR, Dong CD. Development in health-promoting essential polyunsaturated fatty acids production by microalgae: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:847-860. [PMID: 38487279 PMCID: PMC10933236 DOI: 10.1007/s13197-023-05785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 03/17/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.
Collapse
Affiliation(s)
- Siddhant Dubey
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Reeta Rani Singhania
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
3
|
Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122013. [PMID: 36556378 PMCID: PMC9781209 DOI: 10.3390/life12122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component's natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research.
Collapse
|
4
|
Effects of fatty acid synthase-inhibitors on polyunsaturated fatty acid production in marine diatom Fistulifera solaris JPCC DA0580. J Biosci Bioeng 2022; 133:340-346. [DOI: 10.1016/j.jbiosc.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022]
|
5
|
A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
González-Fernández C, Le Grand F, Bideau A, Huvet A, Paul-Pont I, Soudant P. Nanoplastics exposure modulate lipid and pigment compositions in diatoms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114274. [PMID: 32135430 DOI: 10.1016/j.envpol.2020.114274] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS-NH2) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 μg mL-1) and a high (5 μg mL-1) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol's at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom' cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Fabienne Le Grand
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Antoine Bideau
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Arnaud Huvet
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), CS 10070, 29280, Plouzané, France
| | - Ika Paul-Pont
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
7
|
Johansson ON, Töpel M, Egardt J, Pinder MIM, Andersson MX, Godhe A, Clarke AK. Phenomics reveals a novel putative chloroplast fatty acid transporter in the marine diatom Skeletonema marinoi involved in temperature acclimation. Sci Rep 2019; 9:15143. [PMID: 31641221 PMCID: PMC6805942 DOI: 10.1038/s41598-019-51683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/04/2019] [Indexed: 01/06/2023] Open
Abstract
Diatoms are the dominant phytoplankton in temperate oceans and coastal regions and yet little is known about the genetic basis underpinning their global success. Here, we address this challenge by developing the first phenomic approach for a diatom, screening a collection of randomly mutagenized but identifiably tagged transformants. Based upon their tolerance to temperature extremes, several compromised mutants were identified revealing genes either stress related or encoding hypothetical proteins of unknown function. We reveal one of these hypothetical proteins is a novel putative chloroplast fatty acid transporter whose loss affects several fatty acids including the two omega-3, long-chain polyunsaturated fatty acids - eicosapentaenoic and docosahexaenoic acid, both of which have medical importance as dietary supplements and industrial significance in aquaculture and biofuels. This mutant phenotype not only provides new insights into the fatty acid biosynthetic pathways in diatoms but also highlights the future value of phenomics for revealing specific gene functions in these ecologically important phytoplankton.
Collapse
Affiliation(s)
- Oskar N Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Center (GGBC), Box 461, 40530, Gothenburg, Sweden
| | - Jenny Egardt
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Matthew I M Pinder
- Department of Marine Sciences, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden
| | - Adrian K Clarke
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.
| |
Collapse
|
8
|
Nomaguchi T, Maeda Y, Liang Y, Yoshino T, Asahi T, Tanaka T. Comprehensive analysis of triacylglycerol lipases in the oleaginous diatom Fistulifera solaris JPCC DA0580 with transcriptomics under lipid degradation. J Biosci Bioeng 2018; 126:258-265. [DOI: 10.1016/j.jbiosc.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
|
9
|
Arakaki A, Matsumoto T, Tateishi T, Matsumoto M, Nojima D, Tomoko Y, Tanaka T. UV-C irradiation accelerates neutral lipid synthesis in the marine oleaginous diatom Fistulifera solaris. BIORESOURCE TECHNOLOGY 2017; 245:1520-1526. [PMID: 28624246 DOI: 10.1016/j.biortech.2017.05.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/22/2023]
Abstract
This study investigated the induction of oil synthesis in the oleaginous diatom, Fistulifera solaris, following irradiation with small doses of UV-C. A rapid induction of oil accumulation was confirmed within 6h following UV-C radiation of the diatom cells, with increases in cell oil body volumes after 24h of approximately 4- to 6-fold from the initial volume. Reactive oxygen species (ROS), which can be generated by a UV-C-mediated reaction, were detected in irradiated cells and the correlation between ROS generation and oil accumulation was confirmed. The smallest UV-C intensity required for oil induction in the cells was 10mJ/cm2. Based on the ideal biodiesel profile, the most suitable FAME composition was obtained when UV255 was used to irradiate the cells. The UV-C radiation method is therefore a solution for shortening the oil accumulation period and improving biodiesel productivity.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takuya Matsumoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takuma Tateishi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mitsufumi Matsumoto
- Biotechnology Laboratory, Electric Power Development CO. Ltd, Yanagisaki-machi, Wakamatsu-ku, Kitakyushu 808-0111, Japan
| | - Daisuke Nojima
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshino Tomoko
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Tanaka T, Yabuuchi T, Maeda Y, Nojima D, Matsumoto M, Yoshino T. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. BIORESOURCE TECHNOLOGY 2017; 245:567-572. [PMID: 28898857 DOI: 10.1016/j.biortech.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA), have attracted attention owing to their health benefits for humans, as well as their importance in aquaculture and animal husbandry. Establishing a sustainable PUFA supply based on fish oils has been difficult due to their increasing demand. Therefore, alternative sources of PUFAs are required. In this research, we examined the potential of the marine oleaginous diatom Fistulifera solaris as an alternative producer of PUFAs. Optimization of culture conditions was carried out for high cell density cultivation, and a maximal biomass productivity of 1.32±0.13g/(L·day) was achieved. By slightly adjusting the culture conditions for EPA production, the maximal EPA productivity reached 135.7±10.0mg/(L·day). To the best of our knowledge, this is the highest EPA productivity among microalgae cultured under photoautotrophic conditions. This result indicates that F. solaris is a promising candidate host for sustainable PUFA production.
Collapse
Affiliation(s)
- Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Takashi Yabuuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daisuke Nojima
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mitsufumi Matsumoto
- Biotechnology Laboratory, Electric Power Development Co., Ltd, 1, Yanagisaki-machi, Wakamatsu-ku, Kitakyusyu 808-0111, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160407. [PMID: 28717017 PMCID: PMC5516116 DOI: 10.1098/rstb.2016.0407] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Virginie Mimouni
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Lionel Ulmann
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Annick Morant-Manceau
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Virginie Pasquet
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
12
|
Production of ω3 fatty acids in marine cyanobacterium Synechococcus sp. strain NKBG 15041c via genetic engineering. Appl Microbiol Biotechnol 2017; 101:6899-6905. [DOI: 10.1007/s00253-017-8407-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
13
|
Kumar A, Sharma A, Upadhyaya KC. Vegetable Oil: Nutritional and Industrial Perspective. Curr Genomics 2016; 17:230-40. [PMID: 27252590 PMCID: PMC4869010 DOI: 10.2174/1389202917666160202220107] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non –renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or ‘Fish oil’. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool.
Collapse
Affiliation(s)
- Aruna Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aarti Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kailash C Upadhyaya
- Amity Institute of Molecular Biology and Genomics, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
14
|
Maeda Y, Tateishi T, Niwa Y, Muto M, Yoshino T, Kisailus D, Tanaka T. Peptide-mediated microalgae harvesting method for efficient biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:10. [PMID: 26770260 PMCID: PMC4712521 DOI: 10.1186/s13068-015-0406-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/02/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND Production of biofuels from microalgae has been recognized to be a promising route for a sustainable energy supply. However, the microalgae harvesting process is a bottleneck for industrialization because it is energy intensive. Thus, by displaying interactive protein factors on the cell wall, oleaginous microalgae can acquire the auto- and controllable-flocculation function, yielding smarter and energy-efficient harvesting. RESULTS Towards this goal, we established a cell-surface display system using the oleaginous diatom Fistulifera solaris JPCC DA0580. Putative cell wall proteins, termed frustulins, were identified from the genome information using a homology search. A selected frustulin was subsequently fused with green fluorescent protein (GFP) and a diatom cell-surface display was successfully demonstrated. The antibody-binding assay further confirmed that the displayed GFP could interact with the antibody at the outermost surface of the cells. Moreover, a cell harvesting experiment was carried out using silica-affinity peptide-displaying diatom cells and silica particles where engineered cells attached to the silica particles resulting in immediate sedimentation. CONCLUSION This is the first report to demonstrate the engineered peptide-mediated harvesting of oleaginous microalgae using a cell-surface display system. Flocculation efficiency based on the silica-affinity peptide-mediated cell harvesting method demonstrated a comparable performance to other flocculation strategies which use either harsh pH conditions or expensive chemical/biological flocculation agents. We propose that our peptide-mediated cell harvest method will be useful for the efficient biofuel production in the future.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- />Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 Japan
| | - Takuma Tateishi
- />Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 Japan
| | - Yuta Niwa
- />Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 Japan
| | - Masaki Muto
- />Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 Japan
- />JST, CREST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075 Japan
| | - Tomoko Yoshino
- />Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 Japan
| | - David Kisailus
- />Department of Chemical and Environmental Engineering, University of California, Riverside, Room 343 Materials Science and Engineering Building, Riverside, CA 92521 USA
| | - Tsuyoshi Tanaka
- />Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 Japan
- />JST, CREST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075 Japan
| |
Collapse
|
15
|
Abstract
Microalgae present a huge and still insufficiently tapped resource of very long-chain omega-3 and omega-6 polyunsaturated fatty acids (VLC-PUFA) for human nutrition and medicinal applications. This chapter describes the diversity of unicellular eukaryotic microalgae in respect to VLC-PUFA biosynthesis. Then, we outline the major biosynthetic pathways mediating the formation of VLC-PUFA by sequential desaturation and elongation of C18-PUFA acyl groups. We address the aspects of spatial localization of those pathways and elaborate on the role for VLC-PUFA in microalgal cells. Recent progress in microalgal genetic transformation and molecular engineering has opened the way to increased production efficiencies for VLC-PUFA. The perspectives of photobiotechnology and metabolic engineering of microalgae for altered or enhanced VLC-PUFA production are also discussed.
Collapse
Affiliation(s)
- Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| |
Collapse
|
16
|
Liang Y, Osada K, Sunaga Y, Yoshino T, Bowler C, Tanaka T. Dynamic oil body generation in the marine oleaginous diatom Fistulifera solaris in response to nutrient limitation as revealed by morphological and lipidomic analysis. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis. Mar Drugs 2015; 13:3672-709. [PMID: 26065408 PMCID: PMC4483651 DOI: 10.3390/md13063672] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel), valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.
Collapse
|
18
|
Hosokawa M, Ando M, Mukai S, Osada K, Yoshino T, Hamaguchi HO, Tanaka T. In vivo live cell imaging for the quantitative monitoring of lipids by using Raman microspectroscopy. Anal Chem 2014; 86:8224-30. [PMID: 25073083 DOI: 10.1021/ac501591d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A straightforward in vivo monitoring technique for biomolecules would be an advantageous approach for understanding their spatiotemporal dynamics in living cells. However, the lack of adequate probes has hampered the quantitative determination of the chemical composition and metabolomics of cellular lipids at single-cell resolution. Here, we describe a method for the rapid, direct, and quantitative determination of lipid molecules from living cells using single-cell Raman imaging. In vivo localization of lipids in the form of triacylglycerol (TAG) within oleaginous microalga and their molecular compositions are monitored with high spatial resolution in a nondestructive and label-free manner. This method can provide quantitative and real-time information on compositions, chain lengths, and degree of unsaturation of fatty acids in living cells for improving the cultivating parameters or for determining the harvest timing during large-scale cultivations for microalgal lipid accumulation toward biodiesel production. Therefore, this technique is a potential tool for in vivo lipidomics for understanding the dynamics of lipid metabolisms in various organisms.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Division of Biotechnology of Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology , 2-24-16, Naka-cho, Koganei 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Maeda Y, Sunaga Y, Yoshino T, Tanaka T. Oleosome-associated protein of the oleaginous diatom Fistulifera solaris contains an endoplasmic reticulum-targeting signal sequence. Mar Drugs 2014; 12:3892-903. [PMID: 24983635 PMCID: PMC4113804 DOI: 10.3390/md12073892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Microalgae tend to accumulate lipids as an energy storage material in the specific organelle, oleosomes. Current studies have demonstrated that lipids derived from microalgal oleosomes are a promising source of biofuels, while the oleosome formation mechanism has not been fully elucidated. Oleosome-associated proteins have been identified from several microalgae to elucidate the fundamental mechanisms of oleosome formation, although understanding their functions is still in infancy. Recently, we discovered a diatom-oleosome-associated-protein 1 (DOAP1) from the oleaginous diatom, Fistulifera solaris JPCC DA0580. The DOAP1 sequence implied that this protein might be transported into the endoplasmic reticulum (ER) due to the signal sequence. To ensure this, we fused the signal sequence to green fluorescence protein. The fusion protein distributed around the chloroplast as like a meshwork membrane structure, indicating the ER localization. This result suggests that DOAP1 could firstly localize at the ER, then move to the oleosomes. This study also demonstrated that the DOAP1 signal sequence allowed recombinant proteins to be specifically expressed in the ER of the oleaginous diatom. It would be a useful technique for engineering the lipid synthesis pathways existing in the ER, and finally controlling the biofuel quality.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yoshihiko Sunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
20
|
Profiling of polar lipids in marine oleaginous diatom Fistulifera solaris JPCC DA0580: prediction of the potential mechanism for eicosapentaenoic acid-incorporation into triacylglycerol. Mar Drugs 2014; 12:3218-30. [PMID: 24879545 PMCID: PMC4071573 DOI: 10.3390/md12063218] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/03/2023] Open
Abstract
The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA) content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG) is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI)-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC) species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.
Collapse
|