1
|
New Chlorinated Metabolites and Antiproliferative Polyketone from the Mangrove Sediments-Derived Fungus Mollisia sp. SCSIO41409. Mar Drugs 2022; 21:md21010032. [PMID: 36662205 PMCID: PMC9866852 DOI: 10.3390/md21010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Two new chlorinated metabolites, 8-chlorine-5-hydroxy-2,3-dimethyl-7-methoxychromone (1) and 3,4-dichloro-1H-pyrrole-2,5-dione (3), and eight known compounds (2 and 4-9) were isolated from the mangrove sediments-derived fungus Mollisia sp. SCSIO41409. Their structures were elucidated by physicochemical properties and extensive spectroscopic analysis. The absolute configuration of stemphone C (4) was established for the first time by the X-ray crystallographic analysis. Compounds 3 and 4 showed different intensity of antimicrobial activities against several pathogenic fungi and bacteria, and antiproliferative activities against two human prostate cancer cell lines (IC50 values 2.77 to 9.60 μM). Further, stemphone C (4) showed a reducing PC-3 cell colony formation, inducing apoptosis and blocking the cell cycle at S-phase in a dose-dependent manner; thus, it could be considered as a potential antiproliferative agent and a promising anti-prostate cancer lead compound.
Collapse
|
2
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
3
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
4
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
5
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
6
|
Law JWF, Law LNS, Letchumanan V, Tan LTH, Wong SH, Chan KG, Ab Mutalib NS, Lee LH. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020; 25:E5365. [PMID: 33212836 PMCID: PMC7698459 DOI: 10.3390/molecules25225365] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| | - Lydia Ngiik-Shiew Law
- Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia;
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| | - Sunny Hei Wong
- Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| |
Collapse
|
7
|
Franceschy C, Espinoza C, Padrón JM, Landa-Cadena G, Norte M, Fernández JJ, Shnyreva A, Trigos Á. Antiproliferative potential of 3β,5α,6β,7α-tetrahydroxyergosta-8(14),22-diene produced by Acremonium persicinum isolated from an alkaline crater lake in Puebla, Mexico. Nat Prod Res 2019; 35:2895-2898. [PMID: 31556322 DOI: 10.1080/14786419.2019.1669032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The sterol 3β,5α,6β,7α-tetrahydroxyergosta-8(14),22-diene was obtained from bio-guided fractioning of the chloroform extract of 50 L of liquid culture of Acremonium persicinum. This fungal strain was selected because of its anti-proliferative activity against solid human tumour cell lines (GI50 ≤ 50 μg/mL) in a bio-prospective study of fungi isolated from plant material, sediment and water samples obtained from alkaline lakes Alchichica and Atexcac in Puebla, Mexico. This compound showed GI50 (μM) values of: 16, 24, 18, 15 and 12 against tumour cell lines A-549, HBL-100, HeLa, T-47D and WiDr respectively. GI50 effects against tumour lines T-47D and WiDr were found to be greater than the clinically used drugs Etoposide and Cisplatin. Because of this, the results obtained support the pharmacological importance of the microorganisms that develop in these ecosystems and strengthen the non-invasive bio-prospection studies that our work group has developed in recent years.
Collapse
Affiliation(s)
- César Franceschy
- Doctorado en Ciencias en Ecología y Biotecnología, Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - César Espinoza
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, La Laguna, Spain
| | - Gandhi Landa-Cadena
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Manuel Norte
- Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, La Laguna, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, La Laguna, Spain
| | - Alla Shnyreva
- Faculty of Biology, Department of Mycology and Algology, Moscow State University, Moscow, Russia
| | - Ángel Trigos
- Doctorado en Ciencias en Ecología y Biotecnología, Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México.,Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
8
|
Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes. Curr Microbiol 2019; 77:645-656. [PMID: 31069462 DOI: 10.1007/s00284-019-01698-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Marine actinomycetes are prolific sources of marine drug discovery system contributing for several bioactive compounds of biomedical prominence. Metagenomics, a culture-independent technique through its sequence- and function-based screening has led to the discovery and synthesis of numerous biologically significant compounds like polyketide synthase, Non-ribosomal peptide synthetase, antibiotics, and biocatalyst. While metagenomics offers different advantages over conventional sequencing techniques, they also have certain limitations including bias classification, non-availability of quality DNA samples, heterologous expression, and host selection. The assimilation of advanced amplification and screening methods such as φ29 DNA polymerase, Next-Generation Sequencing, Cosmids, and recent bioinformatics tools like automated genome mining, anti-SMASH have shown promising results to overcome these constrains. Consequently, functional genomics and bioinformatics along with synthetic biology will be crucial for the success of the metagenomic approach and indeed for exploring new possibilities among the microbial consortia for the future drug discovery process.
Collapse
|
9
|
Nguyen HM, Ito T, Win NN, Vo HQ, Nguyen HT, Morita H. A new sterol from the Vietnamese marine sponge Xestospongia testudinaria and its biological activities. Nat Prod Res 2018; 33:1175-1181. [DOI: 10.1080/14786419.2018.1465057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hien Minh Nguyen
- Institute of Natural Medicine, University of Toyama , Toyama, Japan
| | - Takuya Ito
- Institute of Natural Medicine, University of Toyama , Toyama, Japan
| | - Nwet Nwet Win
- Institute of Natural Medicine, University of Toyama , Toyama, Japan
- Department of Chemistry, University of Yangon , Yangon, Myanmar
| | - Hung Quoc Vo
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University , Hue City, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University , Hue City, Vietnam
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama , Toyama, Japan
| |
Collapse
|
10
|
Toxicity of enrofloxacin, copper and their interactions on soil microbial populations and ammonia-oxidizing archaea and bacteria. Sci Rep 2018; 8:5828. [PMID: 29643403 PMCID: PMC5895816 DOI: 10.1038/s41598-018-24016-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/26/2018] [Indexed: 01/04/2023] Open
Abstract
Enrofloxacin (EFX) is one of the most frequently used broad-spectrum veterinary drugs, and copper (Cu) is a heavy metal that could easily bind to certain antibiotic molecules. Hence EFX and Cu were chosen as representatives of antibiotics and heavy metals to explore the abundance and variation of soil microbial populations with a plate-counting technique, as well as the copy numbers of amoA gene in ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) by quantitative PCR methods in Argosols samples. Treatments of applied EFX (0.05, 0.20, 0.80 mmol/kg), Cu (1.60 mmol/kg) and combined EFX and Cu (at molar ratios of 1:32,1:8,1:2) exhibited various effects on different soil microorganisms. The toxicity of combined EFX and Cu was more strongly expressed on both soil microbial populations and amoA gene (AOA and AOB) compared to the EFX treatment alone, in most cases, time and dose effects were observed. With respect to the amoA gene, the AOA-amoA gene was more abundant than the AOB-amoA gene, and the ratio ranged from ~8 to ~11. Moreover, the interaction types of EFX and Cu were more likely to be antagonistic (64.29%) than synergistic (35.71%) on soil abundance and function, which may be related to the incubation time and the ratio of EFX to Cu in the soil.
Collapse
|
11
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
12
|
Mohamed Ibrahim S, Mohamed G, Al Haidari R, Soliman El-Kholy AE, Asfour H, Zayed M. Fusaristerol A: A new cytotoxic and antifungal ergosterol fatty acid ester from the endophytic fungus Fusarium sp. associated with Mentha longifolia roots. Pharmacogn Mag 2018. [DOI: 10.4103/pm.pm_113_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Anandins A and B, Two Rare Steroidal Alkaloids from a Marine Streptomyces anandii H41-59. Mar Drugs 2017; 15:md15110355. [PMID: 29125577 PMCID: PMC5706044 DOI: 10.3390/md15110355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/02/2022] Open
Abstract
Anandins A (1) and B (2), two rare steroidal alkaloids, were isolated from the fermentative broth of a marine actinobacteria Streptomyces anandii H41-59. The gross structures of the two alkaloids were elucidated by spectroscopic methods including HR-ESI-MS, and NMR. Their absolute configurations were confirmed by single-crystal X-ray diffraction analysis and comparison of their experimental and calculated electronic circular dichroism spectra, respectively. Anandin A exhibited a moderate inhibitory effect against three human cancer cell lines MCF-7, SF-268, and NCI-H460 with IC50 values of 7.5, 7.9, 7.8 μg/mL, respectively.
Collapse
|
14
|
Neoantimycins A and B, Two Unusual Benzamido Nine-Membered Dilactones from Marine-Derived Streptomyces antibioticus H12-15. Molecules 2017; 22:molecules22040557. [PMID: 28358337 PMCID: PMC6154602 DOI: 10.3390/molecules22040557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
An actinomycete strain (H12-15) isolated from a sea sediment in a mangrove district was identified as Streptomycesantibioticus on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological, and biochemical characteristics. Two novel benzamido nonacyclic dilactones, namely neoantimycins A (1) and B (2), together with the known antimycins A1ab (3a,b), A2a (4), and A₉ (5), were isolated from the culture broth of this strain. Compounds 1 and 2 are the first natural modified ATNs with an unusual benzamide unit. The structures of these new compounds, including their absolute configuration, were established on the basis of HRMS, NMR spectroscopic data, and quantum chemical ECD calculations. Their cytotoxicities against human breast adenocarcinoma cell line MCF-7, the human glioblastoma cell line SF-268, and the human lung cancer cell line NCI-H460 were also tested. All compounds exhibited mild cytotoxic activity. However, Compounds 1 and 2 showed no activity against C. albicans at the test concentration of 1 mg/mL via paper disc diffusion, while the known antimycins showed obvious antifungal activity.
Collapse
|
15
|
Wang F, Fu SN, Bao YX, Yang Y, Shen HF, Lin BR, Zhou GX. Kitamycin C, a new antimycin-type antibiotic from Streptomyces antibioticus strain 200-09. Nat Prod Res 2017; 31:1819-1824. [PMID: 28278640 DOI: 10.1080/14786419.2017.1295240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An actinomycete strain 200-09, isolated from a soil sample collected from the coast of Hawaii, USA, was identified as Streptomyces antibioticus on the basis of its morphological, physiological and biochemical characteristics as well as 16S rDNA analysis. A new antimycin-type antibiotic, kitamycin C (1), together with kitamycin A (2), kitamycin B (3), urauchmycin B (4), deisovaleryblastomycin (5) was isolated from a cultured broth of strain 200-09. The structure of the new compound was determined by spectroscopic data, including HR-ESI-MS and NMR. All the compounds exhibited antifungal activities against Candida albicans with MIC of about 25.0 μg mL-1.
Collapse
Affiliation(s)
- Fan Wang
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research , Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Shu-Na Fu
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research , Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Yi-Xuan Bao
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research , Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Yu Yang
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research , Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| | - Hui-Fang Shen
- b Key Laboratory of New Technique for Plant Protection in Guangdong , Institute of Plant Protection, Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | - Bi-Run Lin
- b Key Laboratory of New Technique for Plant Protection in Guangdong , Institute of Plant Protection, Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | - Guang-Xiong Zhou
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research , Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University , Guangzhou , China
| |
Collapse
|