1
|
Duan JX, Ma YL, Chen ZW, Zou ZB, Chao R, Li Y, Li BF, Wang Y, Pan YN, Yang XW. Chemical Constituents of the Deep-sea Derived Fungus Purpureocillium lilacinum XIA-9. Chem Biodivers 2025; 22:e202402766. [PMID: 39549042 DOI: 10.1002/cbdv.202402766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Two new sphingosine derivatives (1 and 2), two new vicinal diol analogs (3 and 4), one new diol analog (5), one new fatty acid (9), together with 19 known compounds (6-8, 10-24), were isolated from Purpureocillium lilacinum XIA-9. Their structures were determined by detailed analysis of the 1D and 2D NMR, HRESIMS, and optical rotatory data. Fusarubin 3-methyl ether (17) exhibited potent inhibition on RSL3 induced ferroptosis with the EC50 value of 0.1 μM.
Collapse
Affiliation(s)
- Jia-Xin Duan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yan-Lin Ma
- Department of Pharmacy, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science & Technology, 157 Jinbi Road, Kunming, 650032, China
| | - Zhe-Wen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Rong Chao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Bao-Fu Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Ying-Ni Pan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
2
|
Amuzu P, Pan X, Hou X, Sun J, Jakada MA, Odigie E, Xu D, Lai D, Zhou L. Recent Updates on the Secondary Metabolites from Fusarium Fungi and Their Biological Activities (Covering 2019 to 2024). J Fungi (Basel) 2024; 10:778. [PMID: 39590697 PMCID: PMC11596042 DOI: 10.3390/jof10110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium species are commonly found in soil, water, plants, and animals. A variety of secondary metabolites with multiple biological activities have been recently isolated from Fusarium species, making Fusarium fungi a treasure trove of bioactive compounds. This mini-review comprehensively highlights the newly isolated secondary metabolites produced by Fusarium species and their various biological activities reported from 2019 to October 2024. About 276 novel metabolites were revealed from at least 21 Fusarium species in this period. The main metabolites were nitrogen-containing compounds, polyketides, terpenoids, steroids, and phenolics. The Fusarium species mostly belonged to plant endophytic, plant pathogenic, soil-derived, and marine-derived fungi. The metabolites mainly displayed antibacterial, antifungal, phytotoxic, antimalarial, anti-inflammatory, and cytotoxic activities, suggesting their medicinal and agricultural applications. This mini-review aims to increase the diversity of Fusarium metabolites and their biological activities in order to accelerate their development and applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.A.); (X.P.); (X.H.); (J.S.); (M.A.J.); (E.O.); (D.X.); (D.L.)
| |
Collapse
|
3
|
Wang Y, Ying Z, Li XM, Yang SQ, Li HL, Wang BG, Meng LH. Antimicrobial polyketides from Magellan Seamount-derived fungus Talaromyces scorteus AS-242. J Antibiot (Tokyo) 2023; 76:699-705. [PMID: 37848580 DOI: 10.1038/s41429-023-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Two new nonadride derivatives, namely, talarodrides G and H (1 and 2), and one new depsidone derivative, botryorhodine K (3), together with a known nonadride analogue (4), were characterized from the Magellan Seamount-derived fungus Talaromyces scorteus AS-242. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometry data analysis. X-ray crystallographic analysis of compounds 1 and 3 confirmed their structures and absolute configurations, representing the first characterized crystal structure of a nonadride-type polyketide. The isolated compounds exhibited potent antimicrobial activities against the pathogenic bacterium MRSA and V. parahaemolyticus and pathogenic fungi C. gloeosporioides, F. oxysporum, and F. proliferatum, with MIC values ranging from 1 to 64 μg ml-1.
Collapse
Affiliation(s)
- Ying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China.
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhang Y, Xie CL, Wang Y, He XW, Xie MM, Li Y, Zhang K, Zou ZB, Yang LH, Xu R, Yang XW. Penidihydrocitrinins A-C: New Polyketides from the Deep-Sea-Derived Penicillium citrinum W17 and Their Anti-Inflammatory and Anti-Osteoporotic Bioactivities. Mar Drugs 2023; 21:538. [PMID: 37888473 PMCID: PMC10608093 DOI: 10.3390/md21100538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Three new polyketides (penidihydrocitrinins A-C, 1-3) and fourteen known compounds (4-17) were isolated from the deep-sea-derived Penicillium citrinum W17. Their structures were elucidated by comprehensive analyses of 1D and 2D NMR, HRESIMS, and ECD calculations. Compounds 1-17 were evaluated for their anti-inflammatory and anti-osteoporotic bioactivities. All isolates exhibited significant inhibitory effects on LPS-stimulated nitric oxide production in murine brain microglial BV-2 cells in a dose-response manner. Notably, compound 14 displayed the strongest effect with the IC50 value of 4.7 µM. Additionally, compounds 6, 7, and 8 significantly enhanced osteoblast mineralization, which was comparable to that of the positive control, purmorphamine. Furthermore, these three compounds also suppressed osteoclastogenesis in a dose-dependent manner under the concentrations of 2.5 μM, 5.0 μM, and 10 μM.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Xi-Wen He
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - You Li
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Kai Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Long-He Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ren Xu
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| |
Collapse
|
5
|
Liu SZ, Xu GX, He FM, Zhang WB, Wu Z, Li MY, Tang XX, Qiu YK. New Sorbicillinoids with Tea Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus Hypocrea jecorina H8. Mar Drugs 2022; 20:md20030213. [PMID: 35323512 PMCID: PMC8955853 DOI: 10.3390/md20030213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Four new dimeric sorbicillinoids (1–3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6–11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1–5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 μM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.
Collapse
Affiliation(s)
- Shun-Zhi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Guang-Xin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
| | - Feng-Ming He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Wei-Bo Zhang
- State Key Laboratory of Marine Life, Ocean University of China, Yu-Shan Road, Qingdao 266100, China;
| | - Zhen Wu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
| | - Ming-Yu Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, China; (G.-X.X.); (Z.W.)
- Correspondence: (X.-X.T.); (Y.-K.Q.); Tel./Fax: +86-592-2189868 (Y.-K.Q.)
| | - Ying-Kun Qiu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China; (S.-Z.L.); (F.-M.H.); (M.-Y.L.)
- Correspondence: (X.-X.T.); (Y.-K.Q.); Tel./Fax: +86-592-2189868 (Y.-K.Q.)
| |
Collapse
|
6
|
Ibrahim SRM, Fadil SA, Fadil HA, Eshmawi BA, Mohamed SGA, Mohamed GA. Fungal Naphthalenones; Promising Metabolites for Drug Discovery: Structures, Biosynthesis, Sources, and Pharmacological Potential. Toxins (Basel) 2022; 14:154. [PMID: 35202181 PMCID: PMC8879409 DOI: 10.3390/toxins14020154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
Fungi are well-known for their abundant supply of metabolites with unrivaled structure and promising bioactivities. Naphthalenones are among these fungal metabolites, that are biosynthesized through the 1,8-dihydroxy-naphthalene polyketide pathway. They revealed a wide spectrum of bioactivities, including phytotoxic, neuro-protective, cytotoxic, antiviral, nematocidal, antimycobacterial, antimalarial, antimicrobial, and anti-inflammatory. The current review emphasizes the reported naphthalenone derivatives produced by various fungal species, including their sources, structures, biosynthesis, and bioactivities in the period from 1972 to 2021. Overall, more than 167 references with 159 metabolites are listed.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sana A. Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (G.A.M.)
| | - Haifa A. Fadil
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, Almadinah Almunawarah 30078, Saudi Arabia;
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (G.A.M.)
| |
Collapse
|
7
|
Tang J, Huang X, Cao MH, Wang Z, Yu Z, Yan Y, Huang JP, Wang L, Huang SX. Mono-/Bis-Alkenoic Acid Derivatives From an Endophytic Fungus Scopulariopsis candelabrum and Their Antifungal Activity. Front Chem 2022; 9:812564. [PMID: 35087795 PMCID: PMC8787343 DOI: 10.3389/fchem.2021.812564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with β-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 μg/ml) as the positive control.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Ming-Hang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyin Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Ping Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Li Wang, ; Sheng-Xiong Huang,
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- *Correspondence: Li Wang, ; Sheng-Xiong Huang,
| |
Collapse
|
8
|
Alfattani A, Marcourt L, Hofstetter V, Queiroz EF, Leoni S, Allard PM, Gindro K, Stien D, Perron K, Wolfender JL. Combination of Pseudo-LC-NMR and HRMS/MS-Based Molecular Networking for the Rapid Identification of Antimicrobial Metabolites From Fusarium petroliphilum. Front Mol Biosci 2021; 8:725691. [PMID: 34746230 PMCID: PMC8569130 DOI: 10.3389/fmolb.2021.725691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/06/2021] [Indexed: 01/31/2023] Open
Abstract
An endophytic fungal strain isolated from a seagrass endemic to the Mediterranean Sea (Posidonia oceanica) was studied in order to identify its antimicrobial constituents and further characterize the composition of its metabolome. It was identified as Fusarium petroliphilum by in-depth phylogenetic analyses. The ethyl acetate extract of that strain exhibited antimicrobial activities and an ability to inhibit quorum sensing of Staphylococcus aureus. To perform this study with a few tens of mg of extract, an innovative one-step generic strategy was devised. On one side, the extract was analyzed by UHPLC-HRMS/MS molecular networking for dereplication. On the other side, semi-preparative HPLC using a similar gradient profile was used for a single-step high-resolution fractionation. All fractions were systematically profiled by 1H-NMR. The data were assembled into a 2D contour map, which we call “pseudo-LC-NMR,” and combined with those of UHPLC-HRMS/MS. This further highlighted the connection within structurally related compounds, facilitated data interpretation, and provided an unbiased quantitative profiling of the main extract constituents. This innovative strategy led to an unambiguous characterization of all major specialized metabolites of that extract and to the localization of its bioactive compounds. Altogether, this approach identified 22 compounds, 13 of them being new natural products and six being inhibitors of the quorum sensing mechanism of S. aureus and Pseudomonas aeruginosa. Minor analogues were also identified by annotation propagation through the corresponding HRMS/MS molecular network, which enabled a consistent annotation of 27 additional metabolites. This approach was designed to be generic and applicable to natural extracts of the same polarity range.
Collapse
Affiliation(s)
- Abdulelah Alfattani
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Valérie Hofstetter
- Institute for Plant Production Sciences IPS, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Katia Gindro
- Institute for Plant Production Sciences IPS, Agroscope, Nyon, Switzerland
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologie Microbienne, USR3579, CNRS, Sorbonne Université, Banyuls-sur-mer, France
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Zhao T, Zhang XY, Deng RS, Tan Z, Chen GY, Nong XH. Three new unsaturated fatty acids from marine-derived fungus Aspergillus sp. SCAU150. Nat Prod Res 2021; 36:3965-3971. [PMID: 33764238 DOI: 10.1080/14786419.2021.1903002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Four unsaturated fatty acid derivatives including three new pantheric acids (1-3), together with three known polyketides (5-7), were isolated from a culture broth of the marine-derived fungus Aspergillus sp. SCAU150. Their complete structures were determined by NMR and HRESIMS data analyses. The antifungal activity of the isolated compounds above was evaluated and 2 was found to show moderated activity toward the phytopathogenic fungus Fusarium solani bio-80814 with an inhibition zone diameter of 6 mm under 5 µg/disc.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Yong Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ran-Sha Deng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Zhen Tan
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
10
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
11
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
12
|
Chemistry and bioactivities of secondary metabolites from the genus Fusarium. Fitoterapia 2020; 146:104638. [DOI: 10.1016/j.fitote.2020.104638] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
|
13
|
Niu S, Xia M, Chen M, Liu X, Li Z, Xie Y, Shao Z, Zhang G. Cytotoxic Polyketides Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum MCCC 3A00292. Mar Drugs 2019; 17:md17120686. [PMID: 31817515 PMCID: PMC6950755 DOI: 10.3390/md17120686] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The chemical examination of the solid cultures of the deep-sea-derived fungus Penicillium chrysogenum MCCC 3A00292 resulted in the isolation of three new versiol-type analogues, namely peniciversiols A–C (1–3), and two novel lactone derivatives, namely penicilactones A and B (6 and 7), along with 11 known polyketides. The planar structures of the new compounds were determined by the comprehensive analyses of the high-resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR) data, while their absolute configurations were resolved on the basis of comparisons of the experimental electronic circular dichroism (ECD) spectra with the calculated ECD data. Compound 1 is the second example of versiols featuring a 2,3-dihydropyran-4-one ring. Additionally, compounds 6 and 7 are the first representatives of γ-lactone derivatives constructed by a 1,3-dihydroxy-5-methylbenzene unit esterifying with the α-methyl-γ-hydroxy-γ-acetic acid α,β-unsaturated-γ-lactone moiety and α-hydroxy-γ-methyl-γ-acetic acid α,β-unsaturated-γ-lactone unit, respectively. All of the isolated compounds were evaluated for their cytotoxic activities against five human cancer cell lines of BIU-87, ECA109, BEL-7402, PANC-1, and Hela-S3. Compound 1 exhibited a selective inhibitory effect against the BIU-87 cell line (IC50 = 10.21 μM), while compounds 4, 5, 8, and 12–16 showed inhibitory activities against the ECA109, BIU-87, and BEL-7402 cell lines with the IC50 values ranging from 7.70 to > 20 μM.
Collapse
Affiliation(s)
- Siwen Niu
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
| | - Manli Xia
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
- Correspondence: (M.C.); (G.Z.); Tel.: +86-592-2195393 (M.C.); +86-592-2195833 (G.Z.)
| | - Xiupian Liu
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
| | - Zengpeng Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
| | - Yunchang Xie
- College of life science, Jiangxi Normal University, Nanchang 330022, China;
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
| | - Gaiyun Zhang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.N.); (M.X.); (X.L.); (Z.L.); (Z.S.)
- Correspondence: (M.C.); (G.Z.); Tel.: +86-592-2195393 (M.C.); +86-592-2195833 (G.Z.)
| |
Collapse
|
14
|
Fan SQ, Xie CL, Xia JM, Xing CP, Luo ZH, Shao Z, Yan XJ, He S, Yang XW. Sarocladione, a unique 5,10:8,9-diseco-steroid from the deep-sea-derived fungusSarocladium kiliense. Org Biomol Chem 2019; 17:5925-5928. [DOI: 10.1039/c9ob01159e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sarocladione was isolated from the deep-sea-derived fungusSarocladium kilienseas the first example of a 5,10:8,9-diseco-steroid.
Collapse
Affiliation(s)
- Shao-Qiang Fan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center
- Ningbo University
- Ningbo 315211
- China
- Key Laboratory of Marine Biogenetic Resources
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen 361005
- China
| | - Jin-Mei Xia
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen 361005
- China
| | - Cui-Ping Xing
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen 361005
- China
| | - Zhu-Hua Luo
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen 361005
- China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen 361005
- China
| | - Xiao-Jun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center
- Ningbo University
- Ningbo 315211
- China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center
- Ningbo University
- Ningbo 315211
- China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen 361005
- China
| |
Collapse
|
15
|
Gong J, Chen C, Mo S, Liu J, Wang W, Zang Y, Li H, Chai C, Zhu H, Hu Z, Wang J, Zhang Y. Fusaresters A–E, new γ-pyrone-containing polyketides from fungus Fusarium sp. Hungcl and structure revision of fusariumin D. Org Biomol Chem 2019; 17:5526-5532. [DOI: 10.1039/c9ob00534j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical investigation of a marine-derived fungus Fusarium sp. Hungcl afforded five new γ-pyrone-containing polyketides, fusaresters A–E.
Collapse
|