1
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Lin C, Qin H, Liao Y, Chen J, Gao B. Chemical Synthesis and Insecticidal Activity Research Based on α-Conotoxins. Molecules 2024; 29:2846. [PMID: 38930912 PMCID: PMC11206848 DOI: 10.3390/molecules29122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating resistance of agricultural pests to chemical insecticides necessitates the development of novel, efficient, and safe biological insecticides. Conus quercinus, a vermivorous cone snail, yields a crude venom rich in peptides for marine worm predation. This study screened six α-conotoxins with insecticidal potential from a previously constructed transcriptome database of C. quercinus, characterized by two disulfide bonds. These conotoxins were derived via solid-phase peptide synthesis (SPPS) and folded using two-step iodine oxidation for further insecticidal activity validation, such as CCK-8 assay and insect bioassay. The final results confirmed the insecticidal activities of the six α-conotoxins, with Qc1.15 and Qc1.18 exhibiting high insecticidal activity. In addition, structural analysis via homology modeling and functional insights from molecular docking offer a preliminary look into their potential insecticidal mechanisms. In summary, this study provides essential references and foundations for developing novel insecticides.
Collapse
Affiliation(s)
| | | | | | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (C.L.); (H.Q.); (Y.L.)
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (C.L.); (H.Q.); (Y.L.)
| |
Collapse
|
3
|
Zeng L, Zhang C, Yang M, Sun J, Lu J, Zhang H, Qin J, Zhang W, Jiang Z. Unveiling the Diversity and Modifications of Short Peptides in Buthus martensii Scorpion Venom through Liquid Chromatography-High Resolution Mass Spectrometry. Toxins (Basel) 2024; 16:155. [PMID: 38535821 PMCID: PMC10975176 DOI: 10.3390/toxins16030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2025] Open
Abstract
More recently, short peptides in scorpion venom have received much attention because of their potential for drug discovery. Although various biological effects of these short peptides have been found, their studies have been hindered by the lack of structural information especially in modifications. In this study, small peptides from scorpion venom were investigated using high-performance liquid chromatography high-resolution mass spectrometry followed by de novo sequencing. A total of 156 sequences consisting of 2~12 amino acids were temporarily identified from Buthus martensii scorpion venom. The identified peptides exhibited various post-translational modifications including N-terminal and C-terminal modifications, in which the N-benzoyl modification was first found in scorpion venom. Moreover, a short peptide Bz-ARF-NH2 demonstrated both N-terminal and C-terminal modifications simultaneously, which is extremely rare in natural peptides. In conclusion, this study provides a comprehensive insight into the diversity, modifications, and potential bioactivities of short peptides in scorpion venom.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (L.Z.); (C.Z.); (M.Y.); (J.S.); (J.L.); (H.Z.); (J.Q.); (W.Z.)
| |
Collapse
|
4
|
Zhou M, Yang M, Wen H, Xu S, Han C, Wu Y. O1-conotoxin Tx6.7 cloned from the genomic DNA of Conus textile that inhibits calcium currents. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220085. [PMID: 37283723 PMCID: PMC10241523 DOI: 10.1590/1678-9199-jvatitd-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 06/08/2023] Open
Abstract
Background Conotoxins exhibit great potential as neuropharmacology tools and therapeutic candidates due to their high affinity and specificity for ion channels, neurotransmitter receptors or transporters. The traditional methods to discover new conotoxins are peptide purification from the crude venom or gene amplification from the venom duct. Methods In this study, a novel O1 superfamily conotoxin Tx6.7 was directly cloned from the genomic DNA of Conus textile using primers corresponding to the conserved intronic sequence and 3' UTR elements. The mature peptide of Tx6.7 (DCHERWDWCPASLLGVIYCCEGLICFIAFCI) was synthesized by solid-phase chemical synthesis and confirmed by mass spectrometry. Results Patch clamp experiments on rat DRG neurons showed that Tx6.7 inhibited peak calcium currents by 59.29 ± 2.34% and peak potassium currents by 22.33 ± 7.81%. In addition, patch clamp on the ion channel subtypes showed that 10 μM Tx6.7 inhibited 56.61 ± 3.20% of the hCaV1.2 currents, 24.67 ± 0.91% of the hCaV2.2 currents and 7.30 ± 3.38% of the hNaV1.8 currents. Tx6.7 had no significant toxicity to ND7/23 cells and increased the pain threshold from 0.5 to 4 hours in the mouse hot plate assay. Conclusion Our results suggested that direct cloning of conotoxin sequences from the genomic DNA of cone snails would be an alternative approach to obtaining novel conotoxins. Tx6.7 could be used as a probe tool for ion channel research or a therapeutic candidate for novel drug development.
Collapse
Affiliation(s)
- Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics,
State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key
Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University,
Changsha, Hunan, China
| | - Huiling Wen
- School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi,
China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Molecular
Diagnostics, Guangdong Medical University, Dongguan, China
| | - Cuifang Han
- Guangdong Provincial Key Laboratory of Medical Molecular
Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular
Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
6
|
Wu Y, Yang M, Li Y, Zhang W, Zhou M. Synthesis and evaluation of a novel analgesic conotoxin Lt7b that inhibits calcium currents and increases sodium currents. J Cell Mol Med 2022; 26:5330-5334. [PMID: 36050866 PMCID: PMC9575111 DOI: 10.1111/jcmm.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Conotoxins are promising neuropharmacological tools and drug candidates due to their high efficiency and specificity in targeting ion channels or neurotransmitter receptors. In this study, a novel O2‐superfamily conotoxin, Lt7b, was synthesized and its pharmacological functions were evaluated. Lt7b with three modified amino acids and three disulfide bonds was successfully synthesized. CD spectra showed that Lt7b had a typical α‐helix in the secondary structure. Patch clamp experiments on rat DRG neurons showed that Lt7b could significantly inhibit calcium currents with an IC50 value of 856 ± 95 nM. Meanwhile, 10 μM Lt7b could significantly increase the sodium currents by 77 ± 8%, but it had no obvious effects on the potassium currents in DRG neurons. In addition, patch clamp experiments on ion channel subtypes showed that 10 μM Lt7b could inhibit 7.0 ± 1.2%, 8.0 ± 1.5%, 4.6 ± 3.4%, and 9.5 ± 0.1% of the hCav1.2, hCav2.1, hCav2.2, and hCav3.2 currents, respectively, while it did not increase the rNav1.7, rNav1.8, hNav1.5, hNav1.7, and hNav1.8 currents. Lt7b had no obvious toxicity to HaCaT and ND7/23 cells up to 1 mM and significantly increased the pain threshold at the testing time of 0.5–4 h in a dose‐dependent manner in the mouse hotplate assay. This novel conotoxin Lt7b may be a useful tool for ion channel studies and analgesic drug development.
Collapse
Affiliation(s)
- Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Yubin Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Shijingshan District, China
| | - Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Antiviral Effects of Animal Toxins: Is There a Way to Drugs? Int J Mol Sci 2022; 23:ijms23073634. [PMID: 35408989 PMCID: PMC8998278 DOI: 10.3390/ijms23073634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Viruses infect all types of organisms, causing viral diseases, which are very common in humans. Since viruses use the metabolic pathways of their host cells to replicate, they are difficult to eradicate without affecting the cells. The most effective measures against viral infections are vaccinations and antiviral drugs, which selectively inhibit the viral replication cycle. Both methods have disadvantages, which requires the development of new approaches to the treatment of viral diseases. In the study of animal venoms, it was found that, in addition to toxicity, venoms exhibit other types of biological activity, including an antiviral one, the first mention of which dates back to middle of the last century, but detailed studies of their antiviral activity have been conducted over the past 15 years. The COVID-19 pandemic has reinforced these studies and several compounds with antiviral activity have been identified in venoms. Some of them are very active and can be considered as the basis for antiviral drugs. This review discusses recent antiviral studies, the found compounds with high antiviral activity, and the possible mechanisms of their action. The prospects for using the animal venom components to create antiviral drugs, and the expected problems and possible solutions are also considered.
Collapse
|
8
|
Tetramine in the Salivary Glands of Marine Carnivorous Snails: Analysis, Distribution, and Toxicological Aspects. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focusing on tetramine, tetramethylammonium ion, contained in the salivary glands of marine carnivorous snails, this paper gives an overview of analytical methods, distribution in marine snails, and toxicological aspects. Some Neptunea snails have often caused food poisoning in North Atlantic and Northeast Asia regions, especially in Japan. The toxin of both N. arthritica and N. antiqua was first proven to be tetramine in 1960. Subsequent research on marine snail tetramine has progressed with the development of analytical methods. Of the various methods developed, the LC/ESI-MS method is most recommended for tetramine analysis in terms of sensitivity, specificity, and versatility. Accumulated data show that tetramine is ubiquitously contained at high concentrations (usually several mg/g) in the salivary glands of Neptunea snails. Tetramine is also found in the muscle and viscera of Neptunea snails and even in the salivary gland of marine snails other than Neptunea species, although mostly at low levels (below 0.1 mg/g). Interestingly, the major toxin in the salivary glands of Fusitriton oregonensis and Hemifusus tuba is distinguishable from tetramine. In tetramine poisoning, diverse symptoms attributable to the ganglion-blocking action of tetramine, such as visual disturbance, headache, dizziness, abdominal pain, and nausea, develop within 30 min after ingestion of snails because of rapid absorption of tetramine from the gastrointestinal tract. The symptoms are generally mild and subside in a short time (within 24 at most) because of rapid excretion through the kidney. However, it should be kept in mind that tetramine poisoning can be severe in patients with kidney dysfunction, as shown by two recent case reports. Finally, given the diffusion of tetramine from the salivary gland to the muscle during boiling and thawing of snails, removal of salivary glands from live snails is essential to avoid tetramine poisoning.
Collapse
|
9
|
Dashevsky D, Rodriguez J. A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera: Pompilidae). Toxins (Basel) 2021; 13:toxins13110744. [PMID: 34822528 PMCID: PMC8622703 DOI: 10.3390/toxins13110744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field.
Collapse
|
10
|
Identification of Novel Conotoxin Precursors from the Cone Snail Conus spurius by High-Throughput RNA Sequencing. Mar Drugs 2021; 19:md19100547. [PMID: 34677446 PMCID: PMC8541002 DOI: 10.3390/md19100547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022] Open
Abstract
Marine gastropods of the genus Conus, comprising more than 800 species, have the characteristic of injecting worms and other prey with venom. These conopeptide toxins, highly diverse in structure and action, are highly potent and specific for their molecular targets (ion channels, receptors, and transporters of the prey's nervous system), and thus are important research tools and source for drug discovery. Next-generation sequencing technologies are speeding up the discovery of novel conopeptides in many of these species, but only limited information is available for Conus spurius, which inhabits sandy mud. To search for new precursor conopeptides, we analyzed the transcriptome of the venous ducts of C. spurius and identified 55 putative conotoxins. Seven were selected for further study and confirmed by Sanger sequencing to belong to the M-superfamily (Sr3.M01 and Sr3.M02), A-superfamily (Sr1.A01 and Sr1.A02), O-superfamily (Sr15.O01), and Con-ikot-ikot (Sr21.CII01 and Sr22.CII02). Six of these have never been reported. To our knowledge, this report is the first to use high-throughput RNA sequencing for the study of the diversity of C. spurius conotoxins.
Collapse
|
11
|
Yang M, Li Y, Liu L, Zhou M. A novel proline-rich M-superfamily conotoxin that can simultaneously affect sodium, potassium and calcium currents. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200164. [PMID: 34234819 PMCID: PMC8230863 DOI: 10.1590/1678-9199-jvatitd-2020-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background Conotoxins have become a research hotspot in the neuropharmacology field for their high activity and specificity in targeting ion channels and neurotransmitter receptors. There have been reports of a conotoxin acting on two ion channels, but rare reports of a conotoxin acting on three ion channels. Methods Vr3a, a proline-rich M-superfamily conotoxin from a worm-hunting Conus varius, was obtained by solid-phase synthesis and identified by mass spectrometry. The effects of synthesized Vr3a on sodium, potassium and calcium currents were tested on rat DRG cells by patch clamp experiments. The further effects of Vr3a on human Cav1.2 and Cav2.2 currents were tested on HEK293 cells. Results About 10 μM Vr3a has no effects on the peak sodium currents, but can induce a ~10 mV shift in a polarizing direction in the current-voltage relationship. In addition, 10 μM Vr3a can increase 19.61 ± 5.12% of the peak potassium currents and do not induce a shift in the current-voltage relationship. An amount of 10 μM Vr3a can inhibit 31.26% ± 4.53% of the peak calcium currents and do not induce a shift in the current-voltage relationship. The IC50 value of Vr3a on calcium channel currents in rat DRG neurons is 19.28 ± 4.32 μM. Moreover, 10 μM Vr3a can inhibit 15.32% ± 5.41% of the human Cav1.2 currents and 12.86% ± 4.93% of the human Cav2.2 currents. Conclusions Vr3a can simultaneously affect sodium, potassium and calcium currents. This novel triple-target conotoxin Vr3a expands understanding of conotoxin functions.
Collapse
Affiliation(s)
- Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubin Li
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Longfei Liu
- Department of Urology, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maojun Zhou
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Ebou A, Koua D, Addablah A, Kakou-Ngazoa S, Dutertre S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021; 9:344. [PMID: 33805497 PMCID: PMC8066717 DOI: 10.3390/biomedicines9040344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Despite their impressive diversity and already broad therapeutic applications, cone snail venoms have received less attention as a natural source in the investigation of antimicrobial peptides than other venomous animals such as scorpions, spiders, or snakes. Cone snails are among the largest genera (Conus sp.) of marine invertebrates, with more than seven hundred species described to date. These predatory mollusks use their sophisticated venom apparatus to capture prey or defend themselves. In-depth studies of these venoms have unraveled many biologically active peptides with pharmacological properties of interest in the field of pain management, the treatment of epilepsy, neurodegenerative diseases, and cardiac ischemia. Considering sequencing efficiency and affordability, cone snail venom gland transcriptome analyses could allow the discovery of new, promising antimicrobial peptides. We first present here the need for novel compounds like antimicrobial peptides as a viable alternative to conventional antibiotics. Secondly, we review the current knowledge on cone snails as a source of antimicrobial peptides. Then, we present the current state of the art in analytical methods applied to crude or milked venom followed by how antibacterial activity assay can be implemented for fostering cone snail antimicrobial peptides studies. We also propose a new innovative profile Hidden Markov model-based approach to annotate full venom gland transcriptomes and speed up the discovery of potentially active peptides from cone snails.
Collapse
Affiliation(s)
- Anicet Ebou
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Dominique Koua
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Audrey Addablah
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
13
|
Schmidt CA, Wilson DT, Cooke I, Potriquet J, Tungatt K, Muruganandah V, Boote C, Kuek F, Miles JJ, Kupz A, Ryan S, Loukas A, Bansal PS, Takjoo R, Miller DJ, Peigneur S, Tytgat J, Daly NL. Identification and Characterization of a Peptide from the Stony Coral Heliofungia actiniformis. JOURNAL OF NATURAL PRODUCTS 2020; 83:3454-3463. [PMID: 33166137 DOI: 10.1021/acs.jnatprod.0c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined β-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.
Collapse
Affiliation(s)
- Casey A Schmidt
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeremy Potriquet
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- AB Sciex, Brisbane, Queensland, Australia
| | - Katie Tungatt
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Chloë Boote
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Felicity Kuek
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - John J Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Paramjit S Bansal
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Rozita Takjoo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David J Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
14
|
Zhao L, Barber LM, Hung A. Structural and dynamical effects of targeted mutations on μO-Conotoxin MfVIA: Molecular simulation studies. J Mol Graph Model 2020; 102:107777. [PMID: 33130390 DOI: 10.1016/j.jmgm.2020.107777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Conotoxins are a group of cysteine-rich, neurotoxic peptides isolated from the venom of marine cone snails. MfVIA is a member of the μO-conotoxin family, and acts as an inhibitor of subtype 1.8 voltage-gated sodium ion channels (NaV1.8). The unique selectivity of MfVIA as an inhibitor of NaV1.8 makes it an ideal peptide for elucidation of the physiological functions of this voltage-gated ion channel. Previous experimental studies of point mutations of MfVIA showed that the double mutant [E5K,E8K] exhibited greater activity at NaV1.8 relative to the wild-type toxin. The present study employs molecular dynamics (MD) simulations to examine the effects of various mutations at these key residues (E5 and E8) on the structure and dynamics of MfVIA. Five double mutants were studied, in which the positions 5 and 8 residues were mutated to amino acids with a range of different physicochemical properties, namely [E5A,E8A], [E5D,E8D], [E5F,E8F], [E5K,E8K], and [E5R,E8R]. Except for [E5D,E8D], all of the mutants tend to show decreased contacts at the N-terminus owing to the loss of the R1-E5 salt bridge relative to that of the wild-type, which subsequently lead to greater exposure and flexibility of the N-terminus for most of the mutant peptides studied, potentially rendering them more able to interact with other species, including NaV1.8. Molecular docking studies of the peptides to NaV1.8 via different binding mechanisms suggest that the [E5R, E8R] mutant may be especially worthy of further investigation owing to its predicted binding mode, which differs markedly from those of the other peptides in this study.
Collapse
Affiliation(s)
- Lina Zhao
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Lisa M Barber
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
15
|
Yang M, Zhou M. μ-conotoxin TsIIIA, a peptide inhibitor of human voltage-gated sodium channel hNa v1.8. Toxicon 2020; 186:29-34. [PMID: 32758497 DOI: 10.1016/j.toxicon.2020.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
TsIIIA, the first μ-conotoxin from Conus tessulatus, can selectively inhibit rat tetrodotoxin-resistant sodium channels. TsIIIA also shows potent analgesic activity in a mice hotplate analgesic assay, but its effect on human sodium channels remains unknown. In this study, eight human sodium channel subtypes, hNav1.1- hNav1.8, were expressed in HEK293 or ND7/23 cells and tested on the chemically synthesized TsIIIA. Patch clamp experiments showed that 10 μM TsIIIA had no effects on the tetrodotoxin-sensitive hNav1.1, hNav1.2, hNav1.3, hNav1.4, hNav1.6 and hNav1.7, as well as tetrodotoxin-resistant hNav1.5. For tetrodotoxin-resistant hNav1.8, concentrations of 1, 5 and 10 μM TsIIIA reduced the hNav1.8 currents to 59.26%, 36.21% and 24.93% respectively. Further detailed dose-effect experiments showed that TsIIIA inhibited hNav1.8 currents with an IC50 value of 2.11 μM. In addition, 2 μM TsIIIA did not induce a shift in the current-voltage relationship of hNav1.8. Taken together, the hNav1.8 peptide inhibitor TsIIIA provides a pharmacological probe for sodium channels and a potential therapeutic agent for pain.
Collapse
Affiliation(s)
- Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maojun Zhou
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
16
|
Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020; 187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Conotoxins (CnTX) are bioactive peptides produced by marine molluscs belonging to Conus genus. The biochemical structure of these venomous peptides is characterized by a low number of amino acids linked with disulfide bonds formed by a high degree of post-translational modifications and glycosylation steps which increase the diversity and rate of evolution of these molecules. CnTX different isoforms are known to target ion channels and, in particular, voltage-gated sodium (Na+) channels (Nav channels). These are transmembrane proteins fundamental in excitable cells for generating the depolarization of plasma membrane potential known as action potential which propagates electrical signals in muscles and nerves for physiological functions. Disorders in Nav channel activity have been shown to induce neurological pathologies and pain states. Here, we describe the current knowledge of CnTX isoform modulation of the Nav channel activity, the mechanism of action and the potential therapeutic use of these toxins in counteracting neurological dysfunctions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
17
|
Isolation, Characterization and In-Silico Study of Conotoxin Protein from Conus loroisii and Its Anti-cancer Activity. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar Drugs 2020; 18:E173. [PMID: 32245015 PMCID: PMC7143316 DOI: 10.3390/md18030173] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.
Collapse
Affiliation(s)
- Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
| | - Aleksandra Belovanovic
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Milica Micic-Vicovac
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 ADY7 Dublin, Ireland;
| | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| |
Collapse
|
19
|
Structure, Function, and Therapeutic Potential of Marine Bioactive Peptides. Mar Drugs 2019; 17:md17090505. [PMID: 31466341 PMCID: PMC6780686 DOI: 10.3390/md17090505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
|