1
|
Grande T, Vornoli A, Lubrano V, Vizzarri F, Raffaelli A, Gabriele M, Novoa J, Sandoval C, Longo V, Echeverria MC, Pozzo L. Chlamydomonas agloeformis from the Ecuadorian Highlands: Nutrients and Bioactive Compounds Profiling and In Vitro Antioxidant Activity. Foods 2023; 12:3147. [PMID: 37685081 PMCID: PMC10487033 DOI: 10.3390/foods12173147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Green microalgae are single-celled eukaryotic organisms that, in recent years, are becoming increasingly important in the nutraceutical, cosmetic, and pharmaceutical fields because of their high content of bioactive compounds. In this study, a particular green microalga was isolated from freshwater highland lakes of Ecuador and morphologically and molecularly identified as Chlamydomonas agloeformis (ChA), and it was studied for nutritional and nutraceutical properties. The phenolic composition and the fatty acids profile of lyophilized cells were determined. The methanolic extract was analyzed for the phenolic compounds profile and the antioxidant capacity by means of in vitro tests. Finally, Human Microvascular Endothelial Cells (HMEC-1) were exploited to explore the capacity of ChA to reduce the endothelial damage induced by oxidized LDL-mediated oxidative stress. The extract showed a good antioxidant ability thanks to the high content in polyphenolic compounds. The observed decrease in HMEC-1 cells endothelial damage also was probably due to the antioxidant compounds present in the extract. Based on the outcomes of our in vitro assays, ChA demonstrated to be a promising source of bioactive compounds possessing exceptional antioxidant capacities which make it a prospective functional food.
Collapse
Affiliation(s)
- Teresa Grande
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Valter Lubrano
- Fondazione G. Monasterio, CNR/Regione Toscana, 56124 Pisa, Italy;
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Jeniffer Novoa
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Carla Sandoval
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| |
Collapse
|
2
|
Lyu Y, Yang J, Cheng L, Li Z, Zheng J. Benzo(a)pyrene-induced mitochondrial respiration and glycolysis disturbance in human neuroblastoma cells. J Toxicol Sci 2023; 48:87-97. [PMID: 36725024 DOI: 10.2131/jts.48.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian cells generate ATP through mitochondrial respiration and glycolysis. Mitochondria not only play a key role in cell energy metabolism but also in cell cycle regulation. As a neurotoxic pollutant, benzo(a)pyrene (BaP) can trigger neuronal oxidative damage and apoptosis. However, the features of BaP-induced energy metabolism disturbance in SH-SY5Y cells has rarely been addressed. This study aimed to measure oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) as indications of respiratory activities and glycolytic. SH-SY5Y cells were treated with BaP to establish a cytotoxicity model, and butylated hydroxy anisole (BHA) was used to alleviate the damages induced by BaP. Using the Seahorse Extracellular Flux analyzer (XFp), we found that BaP significantly reduced basal respiration, ATP-linked OCR in SH-SY5Y cells with dose- and time-dependent. BHA supplementation recovered the mitochondrial respiration, synchronously attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers, then rescued BaP-induced cell apoptosis. But long-term exposure to BaP or exposure to a high dosage of BaP could decrease OCR associated with maximal respiratory, spare capacity, and glycolysis metabolism. At the same time, the damage to cells is also more severe with the rate of apoptosis and mitochondrial membrane potential (ΔΨm) loss rising sharply, which were not entirely reversed by BHA. This study provides energy metabolism-related, indicative biomarkers of cytotoxicity induced by BaP, which might provide information for early prevention and intervention.
Collapse
Affiliation(s)
- Yi Lyu
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - LiXia Cheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - ZhaoFei Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - JinPing Zheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, China.,Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, China
| |
Collapse
|
3
|
Taroncher M, Rodríguez-Carrasco Y, Barba FJ, Ruiz MJ. Evaluation of cytotoxicity, analysis of metals and cumulative risk assessment in microalgae. Toxicol Mech Methods 2022:1-13. [DOI: 10.1080/15376516.2022.2152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mercedes Taroncher
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María José Ruiz
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Fu C, Li Y, Xi H, Niu Z, Chen N, Wang R, Yan Y, Gan X, Wang M, Zhang W, Zhang Y, Lv P. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Front Nutr 2022; 9:978475. [PMID: 35990352 PMCID: PMC9386258 DOI: 10.3389/fnut.2022.978475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic hydrocarbon (PAH) whose toxicological effects in the vessel-wall cells have been recognized. Many lines of evidence suggest that tobacco smoking and foodborne BaP exposure play a pivotal role in the dysfunctions of vessel-wall cells, such as vascular endothelial cell and vascular smooth muscle cells, which contribute to the formation and worsening of cardiovascular diseases (CVDs). To clarify the underlying molecular mechanism of BaP-evoked CVDs, the present study mainly focused on both cellular and animal reports whose keywords include BaP and atherosclerosis, abdominal aortic aneurysm, hypertension, or myocardial injury. This review demonstrated the aryl hydrocarbon receptor (AhR) and its relative signal transduction pathway exert a dominant role in the oxidative stress, inflammation response, and genetic toxicity of vessel-wall cells. Furthermore, antagonists and synergists of BaP are also discussed to better understand its mechanism of action on toxic pathways.
Collapse
Affiliation(s)
- Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao Xi
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Rong Wang
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Eco-Environmental Monitoring Center of Hebei Province, Shijiazhuang, China
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Microalgae as Potential Sources of Bioactive Compounds for Functional Foods and Pharmaceuticals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125877] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microalgae are an untapped source of bioactive compounds with various biotechnological applications. Several species are industrially produced and commercialized for the feed or cosmetic industries, however, other applications in the functional food and pharmaceutical markets can be foreseen. In this study, nine industrial/commercial species were evaluated for in vitro antioxidant, calcium-chelating, anti-tumoral, and anti-inflammatory activities. The most promising extracts were fractionated yielding several promising fractions namely, of Tetraselmis striata CTP4 with anti-inflammatory activity (99.0 ± 0.8% reduction in TNF-α production in LPS stimulated human macrophages at 50 µg/mL), of Phaeodactylum Tricornutum with cytotoxicity towards cancerous cell lines (IC50 = 22.3 ± 1.8 μg/mL and 27.5 ± 1.6 μg/mL for THP-1 and HepG2, respectively) and of Porphyridium sp. and Skeletonema sp. with good chelating activity for iron, copper and calcium (IC50 = 0.047, 0.272, 0.0663 mg/mL and IC50 = 0.055, 0.240, 0.0850 mg/mL, respectively). These fractions were chemically characterized by GC–MS after derivatization and in all, fatty acids at various degrees of unsaturation were the most abundant compounds. Some of the species under study proved to be potentially valuable sources of antioxidant, metal chelators, anti-tumoral and anti-inflammatory compounds with possible application in the functional food and pharmaceutical industries.
Collapse
|
6
|
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021; 10:cells10030664. [PMID: 33802698 PMCID: PMC8002553 DOI: 10.3390/cells10030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Frederic Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| | - Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| |
Collapse
|