1
|
Wang Y, Li D, Li X, Ren D, Zhang W, Shu G, Lin J, Li H, Xu F, Peng G, Fu H. In-situ gel injection of poloxamer-based metamizole provides long-acting antipyretic effects. Drug Deliv Transl Res 2025; 15:968-977. [PMID: 38896348 DOI: 10.1007/s13346-024-01651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Metamizole easily decomposes in the body and has a short action time and low bioavailability. Hence, frequent injection administrations are needed to maintain its plasma concentration. This study aimed to design and develop an in-situ gel based on poloxamer 407 and 188 to assess its long-acting antipyretic effects. The in-situ gel-forming systep00m with optimum sol-gel transition temperature of 35.9 °C to 36.3 °C could be formed using a combination of P407 at a ratio of 21-23% (w/v) and P188 at a ratio of 2-4% (w/v). In vitro erosion test showed that the in-situ gel's erosion curve and the metamizole release rate both reached about 90% at 6 h, revealing a good linear relationship between the in-situ gel erosion and the drug release. In vitro release test with dialysis tube showed that the release of metamizole from the in-situ gel was remarkably slower than that from the metamizole solution. Approximately 85% of metamizole was released in the dialysis tube within 7 h, implying a good sustained release effect. Pharmacodynamic study showed that the in-situ gel injection extended the action time of metamizole relative to that when using the metamizole solution. Pharmacokinetic study revealed that the in-situ gel significantly increased the blood serum half-life and area under the curve), contributing to a sustained release and improved bioavailability. This study demonstrated that in-situ gel injection could prolong the action of metamizole in the body to reduce the number of administration times and has good clinical application.
Collapse
Affiliation(s)
- Yueli Wang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dongbo Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaojuan Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Ren
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haohuan Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Funeng Xu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangneng Peng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
3
|
Sreeharsha N, Prasanthi S, Rao GSNK, Gajula LR, Biradar N, Goudanavar P, Naveen NR, Shiroorkar PN, Meravanige G, Telsang M, Asif AH, Sreenivasalu PKP. Formulation optimization of chitosan surface coated solid lipid nanoparticles of griseofulvin: A Box-Behnken design and in vivo pharmacokinetic study. Eur J Pharm Sci 2025; 204:106951. [PMID: 39486655 DOI: 10.1016/j.ejps.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Solid lipid nanoparticles (SLNs) are becoming increasingly favored for their robust biocompatibility and their capacity to enhance drug solubility, particularly for drugs with limited water solubility. This study delves into the effectiveness of the hot melt sonication technique in fabricating SLNs with high drug loading capabilities and sustained release characteristics. Griseofulvin (GF), chosen as a representative drug due to its poor water solubility, was encapsulated into SLNs composed of stearic acid. Optimization of chitosan-coated GF-loaded SLNs (CS-GF-SLN) was conducted using a Box-Behnken design. Utilizing the desirability approach, optimal parameters were determined, including a lipid quantity of 450.593 mg, chitosan content of 268.67 mg, and sonication duration of 2.14 h. These parameters resulted in a zeta potential of -34.8 mV and a particle size (PS) of 56.87 nm. Following optimization, the refined formulation underwent comprehensive assessment across various parameters. Notably, the drug encapsulated within SLNs exhibited sustained release over three days, as illustrated by the in-vitro drug release profile. The optimized formulation demonstrated a bioavailability enhancement by approximately 1.7 to 2.0 times compared to the conventional formulation. Furthermore, administration of drug-loaded SLNs to a macrophage cell line demonstrated no cytotoxicity, affirming their suitability as conventional drug delivery platforms for GF.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Kingdom of Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore, 560035, India.
| | - Samathoti Prasanthi
- Department of Pharmaceutics, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyanikethan College of Pharmacy), Sree sainathnagar, A.Rangampet, Tirupati, Andhra Pradesh, 517102, India
| | - Gudhanti Siva Naga Koteswara Rao
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Lakshmi Radhika Gajula
- Department of Pharmaceutics, SJM College of Pharmacy, Chitradurga, Karnataka, 577502, India
| | - Nikita Biradar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Karnataka, 571448, India.
| | | | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | | |
Collapse
|
4
|
Badie MA, Teaima MH, El-Nabarawi MA, Badawi NM. Formulation and optimization of surfactant-modified chitosan nanoparticles loaded with cefdinir for novel topical drug delivery: Elevating wound healing efficacy with enhanced antibacterial properties. Int J Pharm 2024; 666:124763. [PMID: 39332464 DOI: 10.1016/j.ijpharm.2024.124763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Burn wounds remain a significant global health concern, frequently exacerbated by bacterial infections that hinder healing and raise morbidity rates. Cefdinir, a third-generation cephalosporin antibiotic, is used to treat various conditions, but it has limitations such as low water solubility, limited bioavailability, and a short biological half-life. This study aimed to fabricate and optimize novel surfactant-based Cefdinir-loaded chitosan nanoparticles (CFD-CSNPs) for enhancing topical CFD delivery and efficacy in burn healing. Box-Behnken Design (BBD) was employed to develop optimized CFD-CSNPs using Design Expert® software, where the independent factors were chitosan concentration, chitosan: sodium tripolyphosphate ratio, pH, and surfactant type. Particle size PS, zeta potential ZP, Polydispersity index PDI, and entrapment efficiency EE% were evaluated as dependent factors. CFD-CSNPs were produced using the ionic gelation method. The optimized formula was determined and then examined for further in vitro and in vivo assessments. The optimized CFD-CSNPs exhibited acceptable PS, PDI, and ZP values. The EE% of CFD from CSNPs reached 57.89 % ± 1.66. TEM analysis revealed spherical morphology. In vitro release studies demonstrated a biphasic release profile up to (75.5 % ± 3.8) over 48 hrs. The optimized CFD-CSNPs showed improved antimicrobial efficacy against the tested microorganisms, exhibiting superior performance for both biofilm prevention and eradication. Enhanced wound healing activity was achieved by the optimized CFD-CSNPs in both in vitro and in vivo studies as confirmed by scratch wound assay and skin burn mice model. The current study advocates the efficacy of the innovative topical application of CFD-CSNPs for wound healing purposes and treatment of wound infections.
Collapse
Affiliation(s)
- Merna A Badie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.
| |
Collapse
|
5
|
Sreeharsha N, Kunigal Sridhar S, Bhuvanahalli Rangappa A, Goudanavar P, Karadigere Nagaraju P, Raghavendra Naveen N, Narayanappa Shiroorkar P, Haq Asif A, Meravanige G, Swaroop Duddi Sreehari K. Ultrasonication-mediated synthesis of diblock polymer-based nanoparticles for advanced drug delivery systems: Insights and optimization. ULTRASONICS SONOCHEMISTRY 2024; 111:107137. [PMID: 39522330 PMCID: PMC11585744 DOI: 10.1016/j.ultsonch.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study presents the synthesis and optimization of Methylene polyethyl glycol -Polystyrene (mPEG-PS) Diblock (DIP) copolymer-based solid lipid nanoparticles (SLNs) using ultrasonication for advanced drug delivery systems targeting the human immunodeficiency virus (HIV-1). The mPEG-PS block copolymer was synthesized by ring opening polymerization mechanism under nitrogen atmosphere for 24hrs and characterized using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy and NMR, confirming the formation of DIP polymers. Optimization of SLNs formulation was achieved through a systematic approach, utilizing response surface methodology, optimal conditions for SLNs synthesis were determined, resulting in nanoparticles with a particle size of 198 nm and an entrapment efficiency of 67.42 %. Cell viability assays, quantitative PCR for viral DNA analysis, caspase-3 enzyme assays, and quantitative uptake studies using High Performance Liquid Chromatography (HPLC) provided quantitative insights into the efficacy and biocompatibility of the synthesized nanoparticles. The experimental data demonstrate that nanoparticle treatments significantly influence cellular responses, providing valuable insights into their therapeutic potential and underlying mechanisms. By employing precise experimental methods alongside rigorous analytical techniques, this study enhances our understanding of nanoparticle-based drug delivery systems, particularly in the context of HIV treatment. These findings pave the way for optimizing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India.
| | - Srikruthi Kunigal Sridhar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Asha Bhuvanahalli Rangappa
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Purushotham Karadigere Nagaraju
- Department of Pharmaceutical Chemistry and Analysis, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India.
| | | | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
6
|
Karimi Jirandehi A, Asgari R, Keshavarz Shahbaz S, Rezaei N. Nanomedicine marvels: crafting the future of cancer therapy with innovative statin nano-formulation strategies. NANOSCALE ADVANCES 2024:d4na00808a. [PMID: 39478996 PMCID: PMC11515941 DOI: 10.1039/d4na00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
Statins, traditionally used for managing hyperlipidemia and cardiovascular diseases, have garnered significant interest for their potential anti-cancer properties. Research indicates that statins can inhibit critical processes in cancer development, such as apoptosis, angiogenesis, and metastasis. Despite their promising anti-cancer effects, the clinical application of statins in oncology has been hampered by their inherent low solubility and bioavailability. These pharmacokinetic challenges can be effectively addressed through the use of nano-based drug delivery systems. Nano-formulations enhance the delivery and therapeutic efficacy of statins by improving their solubility, stability, and targeting ability, thus maximizing their concentration within the tumor microenvironment and minimizing systemic side effects. This review delves into the potential of nanoparticles as carriers for statins in cancer therapy. It explores the mechanisms by which statins exert their anti-cancer effects, such as through the inhibition of the mevalonate pathway, modulation of immune responses, and induction of apoptosis. Furthermore, the review examines the development of various statin-loaded nano-formulations, highlighting their advantages over conventional formulations. The novelty of this review lies in its focus on recent advancements in nanoformulations that enhance statin delivery to the tumor microenvironment. By discussing the current advancements and prospects of statin nano-formulations, this review aims to provide a comprehensive understanding of how these innovative strategies can improve cancer treatment outcomes and enhance the quality of life for patients. The integration of nanotechnology with statin therapy offers a novel approach to overcoming existing therapeutic limitations and paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Ashkan Karimi Jirandehi
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Reza Asgari
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science Tehran Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN) Tehran Iran
| |
Collapse
|
7
|
Sreeharsha N, Gajula LR, S SK, Bhavani PD, Goudanavar P, A R, Naveen NR, Shiroorkar PN, Meravanige G, Telsang M, Asif AH, Sreenivasalu PKP. Enhancing flowability of lamivudine through quasi-emulsion solvent-diffusion (QESD) crystallization: A comprehensive study on surfactant impact, particle morphology by QbD concepts and tablet compression challenges. Eur J Pharm Sci 2024; 200:106835. [PMID: 38908413 DOI: 10.1016/j.ejps.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Lamivudine (LMD), an enantiomer of 2'-deoxy-3'-thiacytidine, plays a crucial role in combatting HIV-1 and managing hepatitis B virus infections. Despite its effectiveness, challenges arise from its difficult flowability and tendency to agglomerate during storage, necessitating a granulation step before tablet compression, as direct compression has proven ineffective. This study aimed to optimize Lamivudine spherical agglomerates using response surface methodology, delving into the intricate relationship between design factors (concentration of tween, span, and acetone) and experimental outcomes (yield and particle size) through central composite design. Analysis of variance (ANOVA) was employed for optimization, with the Quasi-emulsion solvent-diffusion (QESD) crystallization technique utilized for the checkpoint batch. This technique, involving a single solvent and antisolvent with surfactants, showcased remarkable enhancements in flowability and reduced storage agglomeration. The impact of various surfactants [Hydroxy Propyl Methyl Cellulose (HPMC), polysorbate 80, and sorbitane monooleate] on particle morphology, flowability, and storage agglomeration during crystallization was thoroughly assessed. While achieving direct compression into tablets, the porous structure of LMD agglomerates presented challenges in tablet press production speeds, prompting adjustments such as reducing punch speed or implementing a precompression step. Positive outcomes were realized for disintegration and in vitro drug release in comparison to direct compression and wet granulation methods. In conclusion, the QESD crystallization technique successfully yielded hollow, spherical LMD agglomerates with enhanced properties, representing a significant milestone in pharmaceutical formulation.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India.
| | - Lakshmi Radhika Gajula
- Department of Pharmaceutics, SJM College of Pharmacy, Chitradurga-577502, Karnataka, India
| | - Srikruthi K S
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - Rakshitha A
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, India.
| | | | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
8
|
Dhote NS, Patel RD, Kuwar U, Agrawal M, Alexander A, Jain P, Ajazuddin. Application of Thermoresponsive Smart Polymers based in situ Gel as a Novel Carrier for Tumor Targeting. Curr Cancer Drug Targets 2024; 24:375-396. [PMID: 37534485 DOI: 10.2174/1568009623666230803111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023]
Abstract
The temperature-triggered in situ gelling system has been revolutionized by introducing an intelligent polymeric system. Temperature-triggered polymer solutions are initially in a sol state and then undergo a phase transition to form a gel at body temperature due to various parameters like pH, temperature, and so on. These smart polymers offer a number of advantages, including ease of administration, long duration of release of the drug, low administration frequency with good patient compliance, and targeted drug delivery with fewer adverse effects. Polymers such as poly(N-isopropylacrylamide) (PNIPAAm), polyethylene glycol (PEG), poly (N, N'-diethyl acrylamide), and polyoxypropylene (PPO) have been briefly discussed. In addition to various novel Drug Delivery Systems (DDS), the smart temperature-triggered polymeric system has various applications in cancer therapy and many other disease conditions. This review focuses on the principals involved in situ gelling systems using various temperature-triggered polymers for chemotherapeutic purposes, using smart DDS, and their advanced application in cancer therapy, as well as available marketed formulations and recent advances in these thermoresponsive sol-gel transforming systems.
Collapse
Affiliation(s)
- Nidhi Sudhir Dhote
- Department of Pharmaceutics, School of Pharmacy & Technology Management, Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425 405, Maharashtra, India
| | - Rajat Dineshbhai Patel
- Department of Pharmaceutics, School of Pharmacy & Technology Management, Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425 405, Maharashtra, India
| | - Utkarsha Kuwar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425 405, Maharashtra, India
| | - Mukta Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509 301, Telangana, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Parag Jain
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| |
Collapse
|
9
|
Zhang Y, Wu Y, Du H, Li Z, Bai X, Wu Y, Li H, Zhou M, Cao Y, Chen X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2023; 16:7. [PMID: 38276483 PMCID: PMC10820767 DOI: 10.3390/pharmaceutics16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oral cancer (OC), characterized by malignant tumors in the mouth, is one of the most prevalent malignancies worldwide. Chemotherapy is a commonly used treatment for OC; however, it often leads to severe side effects on human bodies. In recent years, nanotechnology has emerged as a promising solution for managing OC using nanomaterials and nanoparticles (NPs). Nano-drug delivery systems (nano-DDSs) that employ various NPs as nanocarriers have been extensively developed to enhance current OC therapies by achieving controlled drug release and targeted drug delivery. Through searching and analyzing relevant research literature, it was found that certain nano-DDSs can improve the therapeutic effect of drugs by enhancing drug accumulation in tumor tissues. Furthermore, they can achieve targeted delivery and controlled release of drugs through adjustments in particle size, surface functionalization, and drug encapsulation technology of nano-DDSs. The application of nano-DDSs provides a new tool and strategy for OC therapy, offering personalized treatment options for OC patients by enhancing drug delivery, reducing toxic side effects, and improving therapeutic outcomes. However, the use of nano-DDSs in OC therapy still faces challenges such as toxicity, precise targeting, biodegradability, and satisfying drug-release kinetics. Overall, this review evaluates the potential and limitations of different nano-DDSs in OC therapy, focusing on their components, mechanisms of action, and laboratory therapeutic effects, aiming to provide insights into understanding, designing, and developing more effective and safer nano-DDSs. Future studies should focus on addressing these issues to further advance the application and development of nano-DDSs in OC therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Xiaofeng Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yange Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Huimin Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yifeng Cao
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| |
Collapse
|
10
|
Korucu Aktas P, Baysal I, Yabanoglu-Ciftci S, Arica B. Development and In Vitro Evaluation of Crizotinib-Loaded Lipid-Polymer Hybrid Nanoparticles Using Box-Behnken Design in Non-small Cell Lung Cancer. AAPS PharmSciTech 2023; 24:178. [PMID: 37658977 DOI: 10.1208/s12249-023-02634-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
The goal of the study was to produce, optimize, characterize, and compare crizotinib-loaded lipid-polymer hybrid nanoparticles (CL-LPHNPs), representing a novel contribution to the existing literature, and to determine their anticancer activity in non-small cell lung cancer cells (NSCLC). Box-Behnken design was used to investigate the effect of three independent variables: polymer amount (X1), soy phosphatidylcholine (X2), and DSPE-PEG (X3), on three responses: particle size (Y1), polydispersity index (Y2), and zeta potential (Y3). Different parameters were evaluated on the optimized LPHNP formulations such as encapsulation efficiency, drug release study, transmission electron microscopy (TEM) image analysis, and in vitro cell evaluations. The mean particle size of the optimized formulation is between 120 and 220 nm with a PDI< 0.2 and a zeta potential of -10 to -15 mV. The encapsulation efficiency values of crizotinib-loaded PLGA-LPHNPs (CL-PLGA-LPHNPs) and crizotinib-loaded PCL-LPHNPs (CL-PCL-LPHNPs) were 79.25±0.07% and 70.93±1.81%, respectively. Drug release study of CL-PLGA-LPHNPs and CL-PCL-LPHNPs showed a controlled and sustained release pattern as a result of core-shell type. Additionally, after 48 h, CL-PLGA-LPHNPs and CL-PCL-LPHNPs significantly reduced the viability of NCI-H2228 cells compared to free crizotinib. Moreover, CL-PLGA-LPHNPs and CL-PCL-LPHNPs exhibited a significant decrease in RAS, RAF, MEK, and ERK gene/protein expression levels after 48-h incubation. In conclusion, this pioneering study introduces lipid-polymer hybrid nanoparticles containing crizotinib as a novel treatment approach, uniting the advantages of a polymeric core and a lipid shell. The successful formulation optimization using Box-Behnken design yielded nanoparticles with adjustable size, remarkable stability, high drug loading, and a customizable drug release profile. Extensive investigations of key parameters, including particle size, PDI, ZP, TEM analysis, drug release, EE%, and in vitro evaluations, validate the potential of these nanoparticles. Moreover, the examination of two different polymers, PLGA and PCL, highlights their distinct impacts on nanoparticle performance. This research opens up new prospects for advanced therapeutic interventions with lipid-polymer hybrid nanoparticles.
Collapse
Affiliation(s)
- Pelinsu Korucu Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
11
|
Cui S, Liu H, Cui G. Nanoparticles as drug delivery systems in the treatment of oral squamous cell carcinoma: current status and recent progression. Front Pharmacol 2023; 14:1176422. [PMID: 37292147 PMCID: PMC10244499 DOI: 10.3389/fphar.2023.1176422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common human malignancy with an estimated incidence of around 377,713 new cases worldwide in 2020. Despite the advance in clinical management, some of OSCC patients still miss the opportunity of completable resection of tumor, and have to accept medical therapies, e.g., chemotherapy, radiotherapy, or immunotherapy when the disease develops into the advanced stage. However, these therapies have been reported to be far from ideal due to the low efficiency of conventional delivery approaches. To obtain a better therapeutic effect, considerable attempts have been made toward to develop an effective drug delivery system (DDS). Nanoparticles (NPs) including inorganic NPs, polymer NPs, lipid NP, extracellular vesicles and cell membrane-based NPs have been evaluated as the better DDS candidates that can specifically accumulate in the tumor microenvironment along with a large amount of blood vessels. Emerging evidence suggested that NPs formulated with anticancer drugs including chemotherapeutic drugs, radiotherapy and immunotarget antibodies could remarkably improve the release and increase concentration of these drugs at the tumor site and show a better therapeutic efficacy, suggesting that NPs might serve as promising DDSs in the treatment of OSCC. Therefore, we have conducted this review to summarize recent progression and current status of diverse NPs as DDSs in this research field.
Collapse
Affiliation(s)
- Shuxia Cui
- Henan Stomatological Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Guanglin Cui
- Faculty of Health Science, Campus Levanger, Nord University, Levanger, Norway
| |
Collapse
|
12
|
Raghavendra Naveen N, Anitha P, Gowthami B, Goudanavar P, Fattepur S. QbD assisted formulation design and optimization of thiol pectin based Polyethyleneglycol and Montmorillonite(PEG/MMT) nanocomposite films of neomycin sulphate for wound healing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Alkholief M, Kalam MA, Alshememry AK, Ali R, Alhudaithi SS, Alsaleh NB, Raish M, Alshamsan A. Topical Application of Linezolid-Loaded Chitosan Nanoparticles for the Treatment of Eye Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:681. [PMID: 36839049 PMCID: PMC9964951 DOI: 10.3390/nano13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Linezolid (LZ) loaded chitosan-nanoparticles (CSNPs) was developed by the ionic-gelation method using Tripolyphosphate-sodium as a crosslinker for topical application for the treatment of bacterial eye infections. Particles were characterized by Zeta-Sizer (Malvern Nano-series). TEM was used for structural morphology. Encapsulation and drug loading were estimated by measuring the unencapsulated drug. In-vitro drug release in STF (pH 7) was performed through a dialysis membrane. Storage stability of LZ-CSNPs was checked at 25 °C and 40 °C for six months. The antimicrobial potency of NPs was evaluated on different Gram-positive strains. Ocular irritation and pharmacokinetic studies were completed in rabbits. Ex-vivo transcorneal permeation of the drug was determined through the rabbit cornea. Ionic interaction among the oppositely charged functional groups of CS and TPP generated the CSNPs. The weight ratio at 3:1, wt/wt (CS/TPP) with 21.7 mg of LZ produced optimal NPs (213.7 nm with 0.387 of PDI and +23.1 mV of ZP) with 71% and 11.2% encapsulation and drug loading, respectively. Around 76.7% of LZ was released from LZ-AqS within 1 h, while 79.8% of LZ was released from CSNPs at 12 h and 90% at 24 h. The sustained drug release property of CSNPS was evaluated by applying kinetic models. The linearity in the release profile suggested that the release of LZ from CSNPs followed the Higuchi-Matrix model. LZ-CSNPs have shown 1.4 to 1.6-times improved antibacterial activity against the used bacterial strains. The LZ-CSNPs were "minimally-irritating" to rabbit eyes and exhibited 4.4-times increased transcorneal permeation of LZ than from LZ-AqS. Around 3-, 1.2- and 3.1-times improved Tmax, Cmax, and AUC0-24 h, respectively were found for LZ-CSNPs during the ocular pharmacokinetic study. AqS has shown 3.1-times faster clearance of LZ. Conclusively, LZ-CSNPs could offer a better alternative for the prolonged delivery of LZ for the treatment of bacterial infections in the eyes.
Collapse
Affiliation(s)
- Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sulaiman S. Alhudaithi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Aldawsari HM, Naveen NR, Alhakamy NA, Goudanavar PS, Rao GK, Budha RR, Nair AB, Badr-Eldin SM. Compression-coated pulsatile chronomodulated therapeutic system: QbD assisted optimization. Drug Deliv 2022; 29:2258-2268. [PMID: 35838522 PMCID: PMC9477481 DOI: 10.1080/10717544.2022.2094500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulsatile drug delivery systems have drawn attention in contemporary research for designing chronotherapeutic systems. The current work aims to design pulsatile ketorolac tromethamine tablets using compression coating for delayed delivery with a lag time suitable for the treatment of morning stiffness in arthritis. Rapidly disintegrating core tablets of ketorolac tromethamine were formulated using super-disintegrants, and the optimized formulation was compression using PEO WSR coagulant and Eudragit RLPO for delaying the release. The central composite design and response surface methodology were employed to optimize the formulation and process parameters namely PEO WSR Coagulant (X1), Eudragit RLPO (X2), and Hardness (X3). The dependent variables optimized were lag time and time required for 95% drug release. Analysis using response surface graphs and mathematical modeling of the results allowed identifying and quantifying the formulation variables active on the selected responses. A polynomial equation fitted to the data was used to predict the composition with optimum responses. Compression-coated pulsatile tablets’ optimized composition exhibited a lag time of 9 h and released 95% of the ketorolac tromethamine in 17.42 h. Validation of the mathematical model assured the reliability of QBD in formulation design. In vivo X-ray imaging and pharmacokinetic studies established a strong relationship between the coated polymers maintaining the desired lag time for delayed delivery of the active to coincide with the chronobiology for enhanced bioavailability at the right time when needed.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prakash S Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Gsn Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Roja Rani Budha
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Monirul Islam M, HR V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, Fattepur S, Narayanappa Shiroorkar P, Habeebuddin M, Meravanige G, Telsang M, Sreeharsha N. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv 2022; 29:3370-3383. [PMID: 36404771 PMCID: PMC9848420 DOI: 10.1080/10717544.2022.2144963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
Collapse
Affiliation(s)
- Mohammed Monirul Islam
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - Varshini HR
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Telangana, India
| | - Prakash S. Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - N. Raghavendra Naveen
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,CONTACT N. Raghavendra Naveen Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India or
| | - B. Ramesh
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Selangor, Malaysia,Santosh Fattepur School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam40100, Selangor, Malaysia
| | | | - Mohammed Habeebuddin
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Girish Meravanige
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| |
Collapse
|
16
|
The effect of simvastatin-loaded methoxy poly(ethylene glycol)-polylactic acid nanoparticles on osteoblasts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Bakhaidar RB, Naveen NR, Basim P, Murshid SS, Kurakula M, Alamoudi AJ, Bukhary DM, Jali AM, Majrashi MA, Alshehri S, Alissa M, Ahmed RA. Response Surface Methodology (RSM) Powered Formulation Development, Optimization and Evaluation of Thiolated Based Mucoadhesive Nanocrystals for Local Delivery of Simvastatin. Polymers (Basel) 2022; 14:polym14235184. [PMID: 36501579 PMCID: PMC9737842 DOI: 10.3390/polym14235184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
In oral administration systems, mucoadhesive polymers are crucial for drug localization and target-specific activities. The current work focuses on the application of thiolated xanthan gum (TXG) to develop and characterize a novel mucoadhesive nanocrystal (NC) system of simvastatin (SIM). Preparation of SIM-NC was optimized using response surface methodology (RSM) coupled with statistical applications. The concentration of Pluronic F-127 and vacuum pressure were optimized by central composite design. Based on this desirable approach, the prerequisites of the optimum formulation can be achieved by a formulation having 92.568 mg of F-127 and 77.85 mbar vacuum pressure to result in EE of 88.8747% and PS of 0.137.835 nm. An optimized formulation was prepared with the above conditions along with xanthan gum (XG) and TXG and various parameters were evaluated. A formulation containing TXG showed 98.25% of SIM at the end of 96 h. Regarding the mucoadhesion potential evaluated by measuring zeta potential, TXG-SIM-NC shoed the maximum zeta potential of 16,455.8 ± 869 mV at the end of 6 h. The cell viability percentage of TXG-SIM-NC (52.54 ± 3.4% with concentration of 50 µg/mL) was less than the plain SIM, with XG-SIM-NC showing the highest cytotoxicity on HSC-3 cells. In vivo pharmacokinetic studies confirm the enhanced bioavailability of formulated mucoadhesive systems of SIM-NC, with TXG-SIM-NC exhibiting the maximum.
Collapse
Affiliation(s)
- Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Pratap Basim
- Thermo Fisher Scientific, Cincinnati, OH 45237, USA
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed A. Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
18
|
Sreeharsha N, Prasanthi S, Mahalakshmi SVVNS, Goudanavar PS, Naveen NR, Gowthami B, Fattepur S, Meravanige G, Asdaq SMB, Anwer MK, Aldhubiab B, Islam MM, Habeebuddin M, Telsang M, Gharsan MA, Haroun M. Enhancement of Anti-Tumoral Properties of Paclitaxel Nano-Crystals by Conjugation of Folic Acid to Pluronic F127: Formulation Optimization, In Vitro and In Vivo Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227914. [PMID: 36432014 PMCID: PMC9696646 DOI: 10.3390/molecules27227914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, -1, and -1.414). According to the Design Expert software's predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Samathoti Prasanthi
- Department of Pharmaceutics, Sri Venkateswara College of Pharmacy, RVS Nagar, Tirupati Rd, Chittoor 517127, Andhra Pradesh, India
| | | | - Prakash S. Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet 516126, Andhra Pradesh, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | | | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj 11942, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 31982, Saudi Arabia
| | - Mohammed Monirul Islam
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Mohammed Habeebuddin
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Mazen Al Gharsan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 31982, Saudi Arabia
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 31982, Saudi Arabia
| |
Collapse
|
19
|
Alhakamy NA, Naveen NR, Gorityala S, Kurakula M, Hosny KM, Safhi AY, Bukhary DM, Bukhary HA, Sabei FY, Mushtaq RY, Murshid SS. Development of Novel S-Protective Thiolated-Based Mucoadhesive Tablets for Repaglinide: Pharmacokinetic Study. Polymers (Basel) 2022; 14:polym14173529. [PMID: 36080604 PMCID: PMC9460926 DOI: 10.3390/polym14173529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers have an essential role in drug localization and target-specific actions in oral delivery systems. The current work aims to develop and characterize a new mucoadhesive polysaccharide polymer (thiolated xanthan gum-TXG and S-Protected thiolated xanthan gum-STX) that was further utilized for the preparation of repaglinide mucoadhesive tablets. The thiolation of xanthan gum was carried out by ester formation through the reaction of the hydroxyl group of xanthan gum and the carboxyl group of thioglycolic acid. Synthesis of TXG was optimized using central composite design, and TXG prepared using 5.303 moles/L of TGA and 6.075 g/L of xanthan gum can accomplish the prerequisites of the optimized formulation. Consequently, TXG was further combined with aromatic 2-mercapto-nicotinic acid to synthesize STX. TXG and STX were further studied for Fourier-transform infrared spectroscopy, rheological investigations, and Ellman’s assay (to quantify the number of thiol/disulfide groups). A substantial rise in the viscosity of STX might be due to increased interactions of macromolecules liable for improving the mucosal adhesion strength of thiolated gum. STX was proven safe with the support of cytotoxic study data. Mucoadhesive formulations of repaglinide-containing STX showed the highest ex vivo mucoadhesion strength (12.78 g-RSX-1 and 17.57 g- RSX-2) and residence time (>16 h). The improved cross-linkage and cohesive nature of the matrix in the thiolated and S-protected thiolated formulations was responsible for the controlled release of repaglinide over 16 h. The pharmacokinetic study revealed the greater AUC (area under the curve) and long half-life with the RSX-2 formulation, confirming that formulations based on S-protected thiomers can be favorable drug systems for enhancing the bioavailability of low-solubility drugs.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, India
| | - Shashank Gorityala
- Bioanalytical Chemistry, Labcorp Drug Development, Madison, WI 53704, USA
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence: (M.K.); (K.M.H.)
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.K.); (K.M.H.)
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Immam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Alaithan S, Naveen NR, Goudanavar PS, Bhavani PD, Ramesh B, Koppuravuri NP, Fattepur S, Sreeharsha N, Nair AB, Aldhubiab BE, Shinu P, Almuqbil RM. Development of Novel Unfolding Film System of Itopride Hydrochloride Using Box-Behnken Design-A Gastro Retentive Approach. Pharmaceuticals (Basel) 2022; 15:ph15080981. [PMID: 36015129 PMCID: PMC9415307 DOI: 10.3390/ph15080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)’s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions.
Collapse
Affiliation(s)
- Shaima Alaithan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (S.A.); (P.S.G.); (S.F.)
| | | | - Prakash S. Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
- Correspondence: (S.A.); (P.S.G.); (S.F.)
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur Medak 502313, Telangana, India
| | - Beveenahalli Ramesh
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
| | - Naga Prashant Koppuravuri
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Malaysia
- Correspondence: (S.A.); (P.S.G.); (S.F.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
21
|
Karimi Z, Taymouri S, Minaiyan M, Mirian M. Evaluation of thermosensitive chitosan hydrogel containing gefitinib loaded cellulose acetate butyrate nanoparticles in a subcutaneous breast cancer model. Int J Pharm 2022; 624:122036. [PMID: 35868480 DOI: 10.1016/j.ijpharm.2022.122036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
In the present study, gefitinib loaded cellulose acetate butyrate nanoparticles (Gnb-NPs) were prepared and then incorporated into thermo-sensitive chitosan/β-glycerophosphate hydrogels for intratumoral administration in mice bearing breast cancer. Accordingly, Gnb-NPs were prepared using the solvent evaporation process and optimized by applying a two-level fractional factorial design. Properties of NPs, including particle size, zeta potential (ZP), polydispersity index (PdI), encapsulation efficiency (EE) % and drug loading (DL) %, were investigated; the optimized Gnb-NPs were then loaded in chitosan hydrogels (Gnb-NPs-Hydrogel). The formulated Gnb-NPs-Hydrogel was assessed in terms of gelling time, release behavior, injectability, swelling and degradation behavior. The anti-cancer efficacy of Gnb-NPs-Hydrogel was evaluated in vitro against the 4 T1 breast cancer cell line and in vivo in breast tumor bearing mice. The optimized formulation showed spherical particles with the size of 156.50 ± 2.40 nm, PdI of 0.20 ± 0.002, ZP of -4.90 ± 0.04 mV, EE of 99.77 ± 0.09 % and DL of 20.59 ± 0.05 %. Incorporating Gnb-NPs into the hydrogel led to the decrease of the drug release rate. Gnb-NPs-Hydrogel displayed a greater cytotoxic effect in comparison to the free Gnb and Gnb-Hydrogel in 4 T1 cancer cells. Furthermore,intratumorallyinjectedGnb-NPs-Hydrogel showed the strongest antitumor efficacy in vivo. The superior performance of Gnb-NPs-Hydrogel, thus, demonstrated its potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zahra Karimi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Hosny KM, Naveen NR, Kurakula M, Sindi AM, Sabei FY, Fatease AA, Jali AM, Alharbi WS, Mushtaq RY, Felemban M, Tayeb HH, Alfayez E, Rizg WY. Design and Development of Neomycin Sulfate Gel Loaded with Solid Lipid Nanoparticles for Buccal Mucosal Wound Healing. Gels 2022; 8:gels8060385. [PMID: 35735729 PMCID: PMC9222678 DOI: 10.3390/gels8060385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Drug administration to the wound site is a potential method for wound healing. The drug retention duration should be extended, and drug permeability through the buccal mucosal layer should be regulated. Oral wounds can be caused by inflammation, ulcers, trauma, or pathological lesions; if these wounds are not treated properly, they can lead to pain, infection, and subsequent undesirable scarring. This study aimed to develop Kolliphor-407 P-based gel containing neomycin sulfate (NES) loaded in solid lipid nanoparticles (SLNs) and enhance the antimicrobial activity. By considering lipid concentrations and achieving the lowest particle size (Y1) and maximum entrapment (EE-Y2) effectiveness, the formulation of NES-SLN was optimized using the Box–Behnken design. For the selected responses, 17 runs were formulated (as anticipated by the Design-Expert software) and evaluated accordingly. The optimized formulation could achieve a particle size of 196.25 and EE of 89.27% and was further utilized to prepare the gel formulation. The NES-SLN-G formula was discovered to have a smooth, homogeneous structure and good mechanical and rheological properties. After 24 h of treatment, NES-SLN-G showed a regulated in vitro drug release pattern, excellent ex vivo permeability, and increased in vitro antibacterial activity. These findings indicate the potential application of NES-SLN-loaded gels as a promising formulation for buccal mucosal wound healing.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.M.H.); (W.S.A.); (W.Y.R.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence:
| | - Amal M. Sindi
- Department of Oral Diagnostic Science, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 82511, Saudi Arabia;
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.M.H.); (W.S.A.); (W.Y.R.)
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Majed Felemban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam H. Tayeb
- Nanomedicine Unit, Center of Innovation in Personalised Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.M.H.); (W.S.A.); (W.Y.R.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Rizg WY, Naveen NR, Kurakula M, Safhi AY, Murshid SS, Mushtaq RY, Abualsunun WA, Alharbi M, Bakhaidar RB, Almehmady AM, Salawi A, Al Fatease A, Hosny KM. Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies. Pharmaceuticals (Basel) 2022; 15:ph15040491. [PMID: 35455488 PMCID: PMC9031896 DOI: 10.3390/ph15040491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Successful drug delivery by mucoadhesive systems depends on the polymer type, which usually gets adherent on hydration. The intended polymers must sustain the association with biomembranes and preserve or accommodate the drug for an extended time. The majority of hydrophilic polymers tend to make weak interactions like noncovalent bonds, which hampers the positioning of dosage forms at the required target sites, leading to inefficient therapeutic outcomes. It is possible to overcome this by functionalizing the natural polymers with thiol moiety. Further, considering that S-protected thiomers can benefit by improving thiol stability at a broad range of pH and enhancing the residence period at the required target, 2-mercapto-nicotinic acid (MA) was utilized in this present study to shield the free thiol groups on thiolated okra (TO). S-protected TO (STO) was synthesized and characterized for various parameters. Glibenclamide-loaded microspheres were formulated using STO (G-STO-M), and the process was optimized. The optimized formulation has shown complete and controlled release of the loaded drug at the end of the dissolution study. Cell viability assay indicated that the thiolated S-protected polymers gelated very well, and the formulated microspheres were safe. Further, G-STO-M showed considerable in vivo mucoadhesion strength. The glucose tolerance test confirmed the efficacy of STO formulation in minimizing the plasma glucose level. These results favor S-protection as an encouraging tool for improving the absorption of poorly aqueous soluble drugs like glibenclamide.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India;
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence:
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (A.S.)
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Ahmad Salawi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (A.S.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022; 27:molecules27072326. [PMID: 35408724 PMCID: PMC9000411 DOI: 10.3390/molecules27072326] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigates the development of topically applied non-invasive chitosan-nanoparticles (CSNPs) for ocular delivery of tedizolid phosphate (TZP) for the treatment of MRSA-related ocular and orbital infections. An ionic-gelation method was used to prepare TZP-encapsulated CSNPs using tripolyphosphate-sodium (TPP) as cross-linker. Particle characterization was performed by the DLS technique (Zeta-Sizer), structural morphology was observed by SEM. The drug encapsulation and loading were determined by the indirect method. In-vitro release was conducted through dialysis bags in simulated tear fluid (pH 7) with 0.25% Tween-80. Physicochemical characterizations were performed for ocular suitability of CSNPS. An antimicrobial assay was conducted on different strains of Gram-positive bacteria. Eye-irritation from CSNPs was checked in rabbits. Transcorneal flux and apparent permeability of TZP from CSNPs was estimated through excised rabbit cornea. Ionic interaction between the anionic and cationic functional groups of TPP and CS, respectively, resulted in the formation of CSNPs at varying weight ratios of CS/TPP with magnetic stirring (700 rpm) for 4 h. The CS/TPP weight ratio of 3.11:1 with 10 mg of TZP resulted in optimal-sized CSNPs (129.13 nm) with high encapsulation (82%) and better drug loading (7%). Release profiles indicated 82% of the drug was released from the TZP aqueous suspension (TZP-AqS) within 1 h, while it took 12 h from F2 to release 78% of the drug. Sustained release of TZP from F2 was confirmed by applying different release kinetics models. Linearity in the profile (suggested by Higuchi’s model) indicated the sustained release property CSNPs. F2 has shown significantly increased (p < 0.05) antibacterial activity against some Gram-positive strains including one MRSA strain (SA-6538). F2 exhibited a 2.4-fold increased transcorneal flux and apparent permeation of TZP as compared to TZP-AqS, indicating the better corneal retention. No sign or symptoms of discomfort in the rabbits’ eyes were noted during the irritation test with F2 and blank CSNPs, indicating the non-irritant property of the TZP-CSNPs. Thus, the TZP-loaded CSNPs have strong potential for topical use in the treatment of ocular MRSA infections and related inflammatory conditions.
Collapse
|
25
|
Validated Kinetic Spectrophotometric Methods to Optimize Robustness Study with Youden Factorial Combinations to Determine Repaglinide Using Response Surface Methodology via Box–Behnken Design. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Sreeharsha N, Naveen NR, Anitha P, Goudanavar PS, Ramkanth S, Fattepur S, Telsang M, Habeebuddin M, Anwer MK. Development of Nanocrystal Compressed Minitablets for Chronotherapeutic Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15030311. [PMID: 35337109 PMCID: PMC8950040 DOI: 10.3390/ph15030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
The present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box−Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.5% poloxamer, a freezing temperature of −25 °C, and 24 h of freeze-drying time can fulfill the optimized formulation’s requirements to result in a particle size of 219.68 nm, 0.201 polydispersity index, and zeta potential of −38.26 mV. Optimized VS-NC formulation was compressed (VNM) and coated subsequently with ethyl cellulose and HPMC E 5. At the same time, fast dissolving tablets of VS were designed, and the best formulation was loaded with VNM into a capsule size 1 (average fill weight—400−500 mg, lock length—19.30 mm, external diameter: Cap—6.91 mm; Body—6.63 mm). The final tab in cap (tablet-in-capsule) system was studied for in vitro dissolution profile to confirm the chronotherapeutic release of VS. As required, a bi-pulse release of VS was identified with a lag time of 5 h. The accelerated stability studies confirmed no significant changes in the dissolution profiles of the tab in cap system (f2 similarity profile: >90). To conclude, the tab in cap system was successfully developed to induce a dual pulsatile release, which will ensure bedtime dosing with release after a lag-time to match with early morning circadian spikes.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Posina Anitha
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet 516126, Andhra Pradesh, India;
| | - Prakash S. Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
| | - Sundarapandian Ramkanth
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, Tamilnadu, India;
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Habeebuddin
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj 11942, Saudi Arabia;
| |
Collapse
|
27
|
Rizg WY, Naveen NR, Kurakula M, Bukhary HA, Safhi AY, Alfayez E, Sindi AM, Ali S, Murshid SS, Hosny KM. QbD Supported Optimization of the Alginate-Chitosan Nanoparticles of Simvastatin in Enhancing the Anti-Proliferative Activity against Tongue Carcinoma. Gels 2022; 8:103. [PMID: 35200484 PMCID: PMC8924759 DOI: 10.3390/gels8020103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
The goal of the current study is to develop a chitosan alginate nanoparticle system encapsulating the model drug, simvastatin (SIM-CA-NP) using a novel polyelectrolytic complexation method. The formulation was optimized using the central composite design by considering the concentrations of chitosan and alginate at five different levels (coded as +1.414, +1, 0, -1, and -1.414) in achieving minimum particle size (PS-Y1) and maximum entrapment efficiency (EE-Y2). A total of 13 runs were formulated (as projected by the Design-Expert software) and evaluated accordingly for the selected responses. On basis of the desirability approach (D = 0.880), a formulation containing 0.258 g of chitosan and 0.353 g of alginate could fulfill the prerequisites of optimum formulation in achieving 142.56 nm of PS and 75.18% EE. Optimized formulation (O-SIM-CAN) was further evaluated for PS and EE to compare with the theoretical results, and relative error was found to be within the acceptable limits, thus confirming the accuracy of the selected design. SIM release from O-SIM-CAN was retarded significantly even beyond 96 h, due to the encapsulation in chitosan alginate carriers. The cell viability study and Caspase-3 enzyme assay showed a notable difference in contrast to that of plain SIM and control group. All these stated results confirm that the alginate-chitosan nanoparticulate system enhanced the anti-proliferative activity of SIM.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India;
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
| | - Haitham A. Bukhary
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia;
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.S.); (S.A.)
| | - Sarah Ali
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.S.); (S.A.)
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
29
|
Development of Sedative Dexmedetomidine Sublingual In Situ Gels: In Vitro and In Vivo Evaluations. Pharmaceutics 2022; 14:pharmaceutics14020220. [PMID: 35213953 PMCID: PMC8878141 DOI: 10.3390/pharmaceutics14020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Intravenous dexmedetomidine (DEX) is currently approved by the FDA for the sedation of intubated patients in intensive care units to reduce anxiety and to augment postoperative analgesia. Bradycardia and hypotension are limitations associated with the intravenous administration of DEX. In this study, DEX sublingual in situ gels were developed and assessed for their pH, gelling capacity, viscosity, mucoadhesion and in vitro drug release. The optimized gelling system demonstrated enhanced mucoadhesion, superior gelling capacity, reasonable pH and optimal rheological profile. In vivo, compared to the oral solution, the optimal sublingual gel resulted in a significant higher rate and extent of bioavailability. Although the in situ gel had comparable plasma levels to those observed following intravenous administration, significant amelioration of the systemic adverse reactions were attained. As demonstrated by the hot plate method, a sustained duration of analgesia in rats was observed after sublingual administration of DEX gel compared to the intravenously administered DEX solution. Furthermore, no changes in systolic blood pressure and heart rate were recorded in rats and rabbits, respectively, after sublingual administration of DEX. Sublingual administration of DEX in situ gel provides a promising approach for analgesia and sedation, while circumventing the reported adverse reactions associated with intravenous administration of DEX.
Collapse
|
30
|
Asif A, Shiroorkar P, Singh P, Shinu P, Sreeharsha N, Anwer M. Enhanced synergistic antitumor efficacy with topotecan (camptothecin derivative) and curcumin analogs coadministration in novel proniosomal formulations. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_588_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Duan S, Jia JF, Hong B, Zhou J, Zhang Y, Ge F, Li M. Assessment of Amentoflavone Loaded Sub-Micron Particle Preparation using Supercritical Antisolvent for its Antitumor Activity. Curr Drug Deliv 2022; 19:41-48. [DOI: 10.2174/1567201818666210810142750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Introduction:
The amentoflavone (AMF) loaded polymeric sub-micron particles were
prepared using supercritical antisolvent (SAS) technology with the aim of improving the anticancer
activity of AMF.
Materials and Methods:
Zein and phospholipid mixtures composed of Hydrogenated Phosphatidylcholine (HPC)
and egg lecithin (EPC) were used as carrier materials and, the effects of carrier composition on the
product morphology and drug release behavior were investigated. When the mass ratio of Zein/HPC/
EPC was 7/2/1, the AMF loaded particles were spherical shape and sub-micron sized around
400 nm, with a drug load of 4.3±0.3 w% and entrapment efficacy of 87.8±1.8%. The in vitro drug
release assay showed that adding EPC in the wall materials could improve the dispersion stability
of the released AMF in an aqueous medium, and the introduction of HPC could accelerate the drug
release speed.
Results:
MTT assay demonstrated that AMF-loaded micron particles have an improved inhibitory
effect on A375 cells, whose IC50 was 37.39μg/ml, compared with that of free AMF(130.2μg/ml).
Conclusion:
It proved that the AMF loaded sub-micron particles prepared by SAS were a prospective
strategy to improve the antitumor activity of AMF, and possibly promote the clinical use of
AMF preparations.
Collapse
Affiliation(s)
- Shulei Duan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing fu Jia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Biao Hong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ming Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
32
|
Jayash SN, Cooper PR, Shelton RM, Kuehne SA, Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int J Mol Sci 2021; 22:12267. [PMID: 34830145 PMCID: PMC8624171 DOI: 10.3390/ijms222212267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.
Collapse
Affiliation(s)
- Soher N. Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Paul R. Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Sarah A. Kuehne
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | | |
Collapse
|
33
|
Nair AB, Telsang M, Osmani RA. An Engineered Specificity of Anti-Neoplastic Agent Loaded Magnetic Nanoparticles for the Treatment of Breast Cancer. Polymers (Basel) 2021; 13:3623. [PMID: 34771179 PMCID: PMC8587674 DOI: 10.3390/polym13213623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles have gained increased attention due to the prospection of drug delivery at target sites, thus limiting the systemic effects of the drugs. Their efficiency was further improved by adding special carriers such as magnetite (Fe3O4). It is one of the extensively used oxides of iron for both pharmaceutical and biomedical applications owing to its ease of preparation and biocompatibility. In this work, Gemcitabine magnetic nanoparticles were prepared using Fe3O4 and chitosan as the primary ingredients. Optimization was accomplished by Box-Behnken Design and factor interactions were evaluated. The desirability function approach was made to enhance the formulation concerning particle size, polydispersity index, and zeta potential. Based on this, optimized magnetic nanoparticles (O-MNP) were formulated with 300 mg of Fe3O4, 297.7 mg of chitosan, and a sonication time of 2.4 h, which can achieve the prerequisites of the target formulation. All other in vitro parameters were found to be following the requirement. In vitro cytotoxic studies for O-MNP were performed using cell cultures of breast cancer (MCF-7), leukemia (THP-1), prostate cancer (PC-3), and lung cancer (A549). O-MNP showed maximum inhibition growth with MCF-7 cell lines rather than other cell lines. The data observed here demonstrates the potential of magnetic nanoparticles of gemcitabine in treating breast cancers.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Riyaz Ali Osmani
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B), Mumbai 400076, India;
| |
Collapse
|
34
|
Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv 2021; 28:123-133. [PMID: 33355019 PMCID: PMC7758053 DOI: 10.1080/10717544.2020.1862365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acne Vulgaris is one of the most common chronic inflammatory skin disorders that affect majority of teen-agers worldwide. Isotretinoin (ITT) is the drug of choice in the management of acne, but, it suffers from serious side-effects including hepatotoxicity, and some psychological disturbances following its oral intake. The objective of this study was to develop and optimize ITT loaded nanoemulsions (ITT-SNEDDS) and to incorporate resveratrol (RSV)in optimum formulation to decrease ITT side effects The ITT solubility was first tested in various essential oils, surfactants, and co-surfactants to select the essential nanoemulsion ingredients. Mixture design was applied to study the effect of independent variables and their interactions on the selected dependent responses. The developed ITT-SNEDDS were characterized for their globule size and ex vivo permeation. The optimized batch was further loaded with RSV and evaluated for in vitro and ex vivo permeation and for in vivo hepatotoxicity. The developed ITT-SNEDDS exhibited globule size below 300 nm, up to 272.27 ± 7.12 mcg/cm2.h and 61.27 ± 2.83% of steady-state flux (JSS) and permeability % respectively. Optimum formulation consisted of 0.15 g oil mixture, 0.6 g of surfactant (Labrasol), and 0.250 g co-surfactant (Transcutol). Permeability studies confirmed the enhanced permeation percentage of ITT (40.77 ± 1.18%), and RSV (29.94 ± 2.02%) from optimized formulation, with enhanced steady-state flux (JSS). In vivo studies demonstrated the superior hepatoprotective activity of optimized formulation compared to a different drug formulations and marketed product. Therefore, RVS loaded ITT-SNEDDS might be a successful strategy for acne management with improved action, and minimum side effects.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Kurakula M, Naveen N. R, Patel B, Manne R, Patel DB. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels 2021; 7:gels7030096. [PMID: 34287358 PMCID: PMC8293062 DOI: 10.3390/gels7030096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Introduction: in recent decades, interdisciplinary research on the utilization of natural products as “active moiety carriers” was focused on due to their superior safety profile, biodegradability, biocompatibility and the ability for sustained or controlled release activity. The nano-based neuroprotective strategy is explored as an imperative treatment for diabetic neuropathy (DN). Avanafil (AV), that selectively inhibits the degradation of cGMP-specific phosphodiesterase, thereby increasing the levels of cGMP, makes a decisive mediator for cytoprotection. (2) Methods: AVnanocomplex formulations were prepared by a modified anti-solvent precipitation method and the method was optimized by Box–Behnken design. An optimized formulation was characterized and evaluated for various in vitro parameters; (3) results:based on the desirability approach, the formulation containing 2.176 g of chitosan, 7.984 g of zein and 90% v/v ethanol concentration can fulfill the prerequisites of optimum formulation (OB-AV-NC).OB-AV-NC was characterized and evaluated for various parameters. The neuroprotective mechanism of AV was evaluated by pretreatment of PC12 cells with plain AV, avanafil nanocomplex (NC) without antioxidants (AV-NC) and with antioxidants (α-Lipoic acid LP; Ellagic Acid EA), AV-LP-EA-Nanocomplex has also shown considerable attenuation in intracellular reactive oxygen species (ROS) and lipid peroxidation with a significant increase in the PC 12 viability under HG conditions in comparison to pure AV; (4) conclusion: the nanocomplex of AV prepared to utilize natural polymers and antioxidants aided for high solubility of AV and exhibited desired neuroprotective activity.This can be one of the promisingstrategy to translate the AV nanocomplex with safety and efficacy in treating DN.
Collapse
Affiliation(s)
- Mallesh Kurakula
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
- Correspondence: ; Tel.: +1-901-297-7693
| | - Raghavendra Naveen N.
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar 571448, Karnataka, India;
| | - Bhaumik Patel
- Product Development Department, Cure Pharmaceutical Corporation, Los Angeles, CA 90025, USA;
| | - Ravi Manne
- Chemtex Environmental Laboratory, Quality Control, and Assurance Department, Port Arthur, TX 77642, USA;
| | - Devang B. Patel
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| |
Collapse
|
36
|
Formulation of Tablets in Capsule system: Statistical optimization for chronotherapeutic drug delivery of propranolol hydrochloride. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Wujak M, Kozakiewicz A, Ciarkowska A, Loch JI, Barwiolek M, Sokolowska Z, Budny M, Wojtczak A. Assessing the Interactions of Statins with Human Adenylate Kinase Isoenzyme 1: Fluorescence and Enzyme Kinetic Studies. Int J Mol Sci 2021; 22:ijms22115541. [PMID: 34073952 PMCID: PMC8197361 DOI: 10.3390/ijms22115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Statins are the most effective cholesterol-lowering drugs. They also exert many pleiotropic effects, including anti-cancer and cardio- and neuro-protective. Numerous nano-sized drug delivery systems were developed to enhance the therapeutic potential of statins. Studies on possible interactions between statins and human proteins could provide a deeper insight into the pleiotropic and adverse effects of these drugs. Adenylate kinase (AK) was found to regulate HDL endocytosis, cellular metabolism, cardiovascular function and neurodegeneration. In this work, we investigated interactions between human adenylate kinase isoenzyme 1 (hAK1) and atorvastatin (AVS), fluvastatin (FVS), pravastatin (PVS), rosuvastatin (RVS) and simvastatin (SVS) with fluorescence spectroscopy. The tested statins quenched the intrinsic fluorescence of hAK1 by creating stable hAK1-statin complexes with the binding constants of the order of 104 M−1. The enzyme kinetic studies revealed that statins inhibited hAK1 with significantly different efficiencies, in a noncompetitive manner. Simvastatin inhibited hAK1 with the highest yield comparable to that reported for diadenosine pentaphosphate, the only known hAK1 inhibitor. The determined AK sensitivity to statins differed markedly between short and long type AKs, suggesting an essential role of the LID domain in the AK inhibition. Our studies might open new horizons for the development of new modulators of short type AKs.
Collapse
Affiliation(s)
- Magdalena Wujak
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Anna Kozakiewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
- Correspondence: ; Tel.: +48-56-611-4511
| | - Anna Ciarkowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Joanna I. Loch
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Barwiolek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Zuzanna Sokolowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Marcin Budny
- Synthex Technologies Sp. z o.o., Gagarina 7/134B, 87-100 Toruń, Poland;
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| |
Collapse
|
38
|
Abstract
Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.
Collapse
|
39
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Barros R, Quesada R, Tamayo-Ramos JA. Assessment of Physico-Chemical and Toxicological Properties of Commercial 2D Boron Nitride Nanopowder and Nanoplatelets. Int J Mol Sci 2021; 22:E567. [PMID: 33430016 PMCID: PMC7827597 DOI: 10.3390/ijms22020567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
- CNRS, ISCR-UMR 6226, University of Rennes, F-35000 Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Spyros N. Yannopoulos
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Rocio Barros
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain;
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| |
Collapse
|
40
|
Ramaye Y, Dabrio M, Roebben G, Kestens V. Development and Validation of Optical Methods for Zeta Potential Determination of Silica and Polystyrene Particles in Aqueous Suspensions. MATERIALS 2021; 14:ma14020290. [PMID: 33429974 PMCID: PMC7827561 DOI: 10.3390/ma14020290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Zeta potential is frequently used to examine the colloidal stability of particles and macromolecules in liquids. Recently, it has been suggested that zeta potential can also play an important role for grouping and read-across of nanoforms in a regulatory context. Although the measurement of zeta potential is well established, only little information is reported on key metrological principles such as validation and measurement uncertainties. This contribution presents the results of an in-house validation of the commonly used electrophoretic light scattering (ELS) and the relatively new particle tracking analysis (PTA) methods. The performance characteristics were assessed by analyzing silica and polystyrene reference materials. The ELS and PTA methods are robust and have particle mass working ranges of 0.003 mg/kg to 30 g/kg and 0.03 mg/kg to 1.5 mg/kg, respectively. Despite different measurement principles, both methods exhibit similar uncertainties for repeatability (2%), intermediate precision (3%) and trueness (4%). These results confirm that the developed methods can accurately measure the zeta potential of silica and polystyrene particles and can be transferred to other laboratories that analyze similar types of samples. If direct implementation is impossible, the elaborated methodologies may serve as a guide to help laboratories validating their own methods.
Collapse
|
41
|
Nasal Gel Loaded with Amphotericin Nanotransferosomes as Antifungal Treatment for Fungal Sinusitis. Pharmaceutics 2020; 13:pharmaceutics13010035. [PMID: 33379314 PMCID: PMC7824183 DOI: 10.3390/pharmaceutics13010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
On the basis of fungal involvement, rhinosinusitis is categorized into allergic, mycetoma, chronic, and acute invasive types. The aim of the current study was to evaluate the efficacy of an amphotericin gel in situ loaded with nanotransferosomes against Aspergillus flavus, which causes allergic rhinosinusitis. A Box–Behnken design was utilized to study the interaction among the nanotransferosomes and optimize independent variables in formulating them, in order to match the prerequisites of selected responses. The optimal formulation was determined to be 300 mg/mL soybean lecithin, 200 mg/mL amphotericin B (AMP), and 150 mg/mL clove oil, resulting in a particle size of 155.09 nm, 84.30% entrapment efficacy (EE), inhibition zone of 16.0 mm, and 0.1197 mmol serum creatinine. The optimized batch was further prepared into an in situ gel and evaluated for various parameters. The optimized formulation released 79.25% AMP and enhanced permeation through the nasal membrane, while the other formulations did not achieve complete absorption. According to in vivo tests using rabbits as animal models, the optimized AMP-nanotransferosomal formulations (NT) in in situ gel result in a non-significant difference among the various kidney function parameters. In conclusion, nasal in situ gel loaded with AMP-clove oil nanotreansfersomes can act as a promising novel carrier that enhances antifungal activity and decreases AMP nephrotoxicity.
Collapse
|
42
|
Kurakula M, N. NR. Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). Int J Biol Macromol 2020; 165:1924-1938. [DOI: 10.1016/j.ijbiomac.2020.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022]
|
43
|
Hosny KM, Alhakamy NA, Almodhwahi MA, Kurakula M, Almehmady AM, Elgebaly SS. Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12111124. [PMID: 33233372 PMCID: PMC7700536 DOI: 10.3390/pharmaceutics12111124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Sildenafil citrate is a drug used throughout the world primarily to treat erectile dysfunction. Several problems with the commercially available product decrease its efficacy, such as limited solubility, delayed onset of action, and low bioavailability with a large variability in the absorption profile. This study aimed to develop an optimized self-nanoemulsifying lyophilized tablet for the drug to conquer the foresaid problems. Sildenafil solubility in various surfactants, oils, and cosurfactants was attempted. An optimized formulation of a loaded self-nanoemulsion with a small droplet size was developed by applying a special cubic model of the mixture design. Sixteen formulations were prepared and characterized for droplet size. On the basis of solubility studies, a clove oil/oleic acid mixture, polysorbate 20 (Tween 20), and propylene glycol were selected as the proposed oil, surfactant, and cosurfactant, respectively. On the basis of desirability, an optimized sildenafil citrate-loaded self-nanoemulsifying delivery system containing 10% of the oil mixture, 60% of the surfactant, and 30% of the cosurfactant had a droplet size of 65 nm. Subsequently, the tablet form was fabricated with optimum ratios of 0.4% fumed silica, 0.1% hydroxypropyl methylcellulose, and 0.4% sodium starch glycolate. This formula showed satisfactory results in both disintegration and dissolution studies. In vivo pharmacokinetic studies indicated a higher bioavailability (1.44 times) and rapid absorption profile for the study’s tablets compared with commercially available tablets. In conclusion, highly bioavailable oral lyophilized flash tablets of sildenafil were successfully prepared. They will be a good alternative to the conventional solid-dosage form.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef 62511, Egypt
- Correspondence: ; Tel.: +96-656-168-2377
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maeen A. Almodhwahi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
| | - Mallesh Kurakula
- Department of Biomedical Engineering, The Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
| | - Samar S. Elgebaly
- Department of Medical Engineer, Elko-Medical Company, Algomhoria Street, Cairo 22132, Egypt;
| |
Collapse
|
44
|
Kurakula M, Koteswara Rao G. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|