1
|
Mansoori A, Allaf Noveirian H, Hoseinifar SH, Sajjadi M, Ashouri G, Imperatore R, Paolucci M. Polyphenol-rich extracts enhance growth, immune function, and antioxidant defense in juvenile rainbow trout ( Oncorhynchus mykiss). Front Nutr 2024; 11:1487209. [PMID: 39703334 PMCID: PMC11655229 DOI: 10.3389/fnut.2024.1487209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction The present study was conducted to investigate the effects of PMIX, a polyphenol-rich extract mixture from chestnut wood and olive, on growth performance, hematological parameters, immunity in serum and skin mucus, hepatic antioxidant enzymes, and intestinal cytokine expression in rainbow trout (Oncorhynchus mykiss). Methods Four experimental diets containing 0 g PMIX kg-1 diet (control, C), 0.5 g PMIX kg-1 diet (P0.5), 1 g PMIX kg-1 diet (P1), and 2 g PMIX kg-1 diet (P2) were fed to rainbow trout in an eight-week feeding trial. Triplicate groups of fish received each treatment. Growth performance, feed conversion ratio, protein efficiency, hepatosomatic and viscerosomatic indices, hematological parameters, immunity markers, hepatic antioxidant enzyme activities, and intestinal cytokine expression were determined. Results PMIX supplementation significantly improved feed conversion ratios, while groups P0.5 and P1 evidenced an increase in growth performance along with protein efficiency ratios. It also showed decreased hepatosomatic and viscerosomatic indices in the P1 group. Except for higher percentages of monocytes in P0.5 and P1, most hematological parameters of the fish did not differ from that of the control. Serum lysozyme and respiratory burst activities were heightened in all PMIX-treated groups, and the skin mucus lysozyme activity was enhanced in P1. The blood phagocytic activity and phagocytic index, serum immunoglobulin, total protein, and bactericidal activity against A. hydrophila did not change. Hepatic superoxide dismutase activity significantly increased in P1 and P2, even though catalase activity did not change. Intestinal interleukin-6 expression was upregulated in all PMIX-treated groups, while tumor necrosis factor-alpha and interleukin-1 beta were upregulated in P1, P2, and P0.5 respectively. Discussion The present results evidence that dietary polyphenols from chestnut wood and olive extracts enhance growth performance, antioxidant capacity, and several immunological parameters in the blood, skin mucus, and intestine of rainbow trout. A suitable supplementation level was 1 g PMIX kg-1 diet to separate these improvements.
Collapse
Affiliation(s)
- Aghil Mansoori
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hamid Allaf Noveirian
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mirmasoud Sajjadi
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Ghasem Ashouri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
2
|
Kumari P, Kumar S, Raman RP, Brahmchari RK. Nanotechnology: An avenue for combating fish parasites in aquaculture system. Vet Parasitol 2024; 332:110334. [PMID: 39514929 DOI: 10.1016/j.vetpar.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The intensification of aquaculture in recent years has led to the rise of infectious fish diseases caused by bacteria, viruses, and parasites. Parasitic diseases, in particular, are widespread and have significant economic impacts globally. Protozoan parasites like Ichthyophthirius multifiliis and Trichodina sp., myxozoans (cnidarians), monogeneans like Dactylogyrus sp. and Gyrodactylus sp., and crustacean parasites like Argulus sp. and Lernaea cyprinacea primarily cause these diseases. Despite advancements and new technologies aimed at understanding and treating these diseases, parasites remain a major health challenge in aquaculture. Traditional antiparasitic agents face limitations, including drug resistance and negative effects on non-target organisms. Recently, nanotechnology has emerged as a novel approach in aquaculture medicine, enabling the development of effective nanoparticles against pathogenic microbes. Silver nanoparticles (AgNPs) are particularly notable for their strong antimicrobial and antiparasitic properties due to their broad mechanisms of action. Although Argulus is a highly destructive crustacean parasite that financially burdens fish farmers, applying nanoparticles to manage this infection in aquaculture is still underexplored. Therefore, this review explores recent efforts to combat parasitic diseases with AgNPs and investigates their potential parasiticidal mechanisms of action, proposing them as a novel tool that could improve the management and control of argulosis diseases. The article underscores the benefits and challenges of this technology, emphasizing its significance in fostering improved health management for sustainable aquaculture.
Collapse
Affiliation(s)
- Pushpa Kumari
- Department of Aquatic Animal Health Management, College of Fisheries, Kishanganj, Bihar, India.
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ram P Raman
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Rajive K Brahmchari
- Department of Fisheries Resource Management, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Dholi, Muzaffarpur, Bihar, India
| |
Collapse
|
3
|
Kumar V, Parida SN, Dhar S, Bisai K, Sarkar DJ, Panda SP, Das BK. Biogenic synthesis of silver nanoparticle by Cytobacillus firmus isolated from the river sediment with potential antimicrobial properties against Edwardsiella tarda. Front Microbiol 2024; 15:1416411. [PMID: 39282556 PMCID: PMC11392742 DOI: 10.3389/fmicb.2024.1416411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The aquatic environment, independent of their host, is more favorable to pathogenic bacteria than the terrestrial environment. Consequently, pathogenic bacteria can reach very high densities around aquatic animals and can cause high mortality. The conventional approach, such as antibiotics, has minimal effectiveness. Additionally, due to the emergence of (multiple) resistance, their use is under intense scientific and public scrutiny. Hence, there is a need for the development of alternative control techniques, with an emphasis on prevention, which is likely to be more cost-effective. In this study, a potential bacterial strain Cytobacillus firmus was isolated from polluted river sediment and characterized using a comprehensive range of techniques including biochemical, 16S rRNA sequencing and antibiogram assay. The pathogenicity of the bacteria was tested in vivo on Labeo rohita fingerlings found as non-pathogenic. Further, the bacteria were found to synthesize silver nanoparticles (AgNPs) using AgNO3 as a substrate. The obtained AgNPs were characterized by various methods, including UV-vis spectroscopy, FTIR (Fourier-transform infrared spectroscopy), and Transmission Emission Microscopy (TEM). The study found that the AgNPs were 20 nm in size on average. The antimicrobial activity of synthesized AgNPs was examined against the model freshwater pathogenic bacteria, Edwardsiella tarda and both the MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were 0.156 μM, while biofilm inhibition activity was also observed at 0.156 μM. The AgNPs showed no haemolytic activity at 0.313 μM. Our findings suggest that C. firmus mediated bacteriogenic AgNPs modulate the activity of common pathogenic bacteria E. tarda. The thoroughness of our research process gives us confidence in the potential of applying AgNPs in aquaculture as a considerable strategy to control the E. tarda infection.
Collapse
Affiliation(s)
- Vikash Kumar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Satya Narayan Parida
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Souvik Dhar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Kampan Bisai
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Dhruba Jyoti Sarkar
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Soumya Prasad Panda
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| |
Collapse
|
4
|
Samreen, Ahmad I, Khan SA, Naseer A, Nazir A. Green synthesized silver nanoparticles from Phoenix dactylifera synergistically interact with bioactive extract of Punica granatum against bacterial virulence and biofilm development. Microb Pathog 2024; 192:106708. [PMID: 38782213 DOI: 10.1016/j.micpath.2024.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 μg/mL and 250-500 μg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| | - Sarah Ahmad Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
5
|
Saxena I, Ejaz SM, Gupta A. Synthesis characterization and application of butyl acrylate mediated eco-friendly silver nanoparticles using ultrasonic radiation. Heliyon 2024; 10:e28309. [PMID: 38560218 PMCID: PMC10981054 DOI: 10.1016/j.heliyon.2024.e28309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In the present investigation, with an effort to provide appropriate material for future applications, we have touched on two viable advancement targets: the production of silver nanoparticles (Ag-NPs) employing an ultrasonic approach and the use of Ag-NPs in environmental remediation. A green economical method was involved to prepare Ag-NPs using butyl acrylate as a stabilizer. The following techniques were used for analysing Ag-NPs: energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and Fourier transformed infrared (FT-IR) spectroscopy. X-ray diffraction (XRD) analysis for the lattice characteristics showed that Ag-NPs have a face-centered structure with an average crystallite size of 9.51-11.83 nm. FE-SEM and TEM analysis were used for morphological investigations, and revealed that Ag-NPs had a spherical shape with an average particle size of 16.27 nm. The EDX profile displayed a strong signal at ∼3.0 keV, which indicated that the samples comprised silver. UV-Visible spectrophotometer with the absorption maximum occurring between 401 and 411 nm further confirmed the formation of Ag-NPs. The dye degradation effect of synthesized Ag-NPs on methylene blue and Rhodamine B was analyzed to assess their ability for environmental remediation, and results showed that around 100% of the dye degradation effect. This study has provided a most plausible mechanism for the dye degradation.
Collapse
Affiliation(s)
- Indu Saxena
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | | | - Aditya Gupta
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| |
Collapse
|
6
|
Kulikouskaya V, Nikalaichuk V, Hileuskaya K, Ladutska A, Grigoryan K, Kozerozhets I, Hovsepyan V, Sargsyan M, Sidarenka A. Alginate coated biogenic silver nanoparticles for the treatment of Pseudomonas infections in rainbow trout. Int J Biol Macromol 2023; 251:126302. [PMID: 37573909 DOI: 10.1016/j.ijbiomac.2023.126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Pseudomonas species are among the main pathogens causing rainbow trout infections. The present study provides a simple, green, sustainable, and rapid technique to synthesize of biogenic alginate-capped silver nanoparticles (Alg-Ag NPs) suitable for the treatment of Pseudomonas infections. It has been shown that the mechanism (aggregative or autocatalytic) of Alg-Ag NPs formation depended on Alg concentration and the heating approach used. The rate constants and activation energy were calculated. Alg-Ag NPs were characterized by UV-Vis, FTIR, XRD, TEM, AFM, XPS, and DLS. The optimal conditions for the fabrication of spherically-shaped (17-19 nm) and negatively-charged (zeta-potential <-50 mV) Alg-Ag NPs, which are stable during 9 months, included hot-plate assisted synthesis at 100 °C in diluted (1 mg/mL) Alg solutions. In vitro studies showed that Alg-Ag NPs exhibited prominent antimicrobial activity against collection Pseudomonas strains (inhibition zones ranged from 9.0 ± 1.0 to 19.0 ± 1.0 mm), with no significant loss of antibacterial efficacy after 9 months of storage. AFM analysis confirmed that the antibacterial effect of Alg-Ag NPs dealt with the direct nanomechanical disrupting of bacterial cells. The ability of Alg-Ag NPs to inhibit the growth of virulent P.aeruginosa, P.fluorescens and P. putida strains isolated from infected rainbow trout was evaluated. All tested strains were susceptible to Alg(10)-Ag NPs, while Alg(1)-Ag NPs demonstrated a limited strain-specific antibacterial effect. The obtained data displayed the prospects for the application of biogenic Alg-Ag NPs to create novel delivery systems for combating Pseudomonas infections in rainbow trout.
Collapse
Affiliation(s)
- Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus.
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryna Str., 220084 Minsk, Belarus
| | - Alena Ladutska
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus, 2 Kuprevich Str., 220084 Minsk, Belarus
| | - Karine Grigoryan
- Yerevan State University, 1 Alek Manukyan St, Yerevan 0025, Armenia
| | - Irina Kozerozhets
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
| | | | - Mariam Sargsyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
| | - Anastasiya Sidarenka
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus, 2 Kuprevich Str., 220084 Minsk, Belarus
| |
Collapse
|
7
|
Gonçalves JM, Bebianno MJ. Ecotoxicity of emerging contaminants in the reproductive organ of marine mussels Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163486. [PMID: 37068673 DOI: 10.1016/j.scitotenv.2023.163486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Contaminants of emerging concern (CECs) present a new threat to the marine environment, and it is vital to understand the interactions and possible toxicity of CEC mixtures once they reach the ocean. CECs-such as metal nanoparticles, nanoplastics, and pharmaceuticals-are groups of contaminants some of which have been individually evaluated, though their interactions as mixtures are still not fully understood. To ensure a healthy and prosperous future generation, successful reproduction is key: however, if hindered, population dynamics may be at danger leading to a negative impact on biodiversity. This study aimed to understand the effects of silver (20 nm nAg, 10 μg/L), polystyrene nanoparticles (50 nm nPS, 10 μg/L), and 5-fluorouracil (5FU, 10 ng/L) individually and as a mixture (10 μg/L of nPS + 10 μg/L of nAg +10 ng/L of 5FU) in the gonads of Mytilus galloprovincialis. A multibiomarker approach, namely the antioxidant defence system (ADS; superoxide dismutase, catalase, glutathione peroxidases, glutathione - S - transferases activities), and oxidative damage (OD; lipid peroxidation) were analysed in the gonads of mussels. All exposure treatments after 3 days led to an increase of enzymatic activity, followed by an inhibition after 14 and 21 days. Thus, ADS was overwhelmed due to the generation of ROS, resulting in OD, except for nPS exposed mussels. The OD in Mix exposed mussels increased exponentially by 57-fold. When CEC mixtures interact, they are potentially more hazardous than their individual components, posing a major threat to marine species. To understand synergistic and antagonistic interactions, a model was applied, and antagonistic interactions were observed in evaluated biomarkers at all time-points, apart from a synergistic interaction at day 3 relative to LPO. Results indicate that the effects observed in Mix-exposed mussel gonads are mainly due to the interaction of nAg and 5FU but not nPS.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal.
| |
Collapse
|
8
|
Ozdemir C, Gencer M, Coksu I, Ozbek T, Derman S. A new strategy to achieve high antimicrobial activity: green synthesised silver nanoparticle formulations with Galium aparine and Helichrysum arenarium. Arh Hig Rada Toksikol 2023; 74:90-98. [PMID: 37357883 PMCID: PMC10291498 DOI: 10.2478/aiht-2023-74-3684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/01/2022] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
Silver nanoparticles (AgNPs), which have recently gained attention due to their antimicrobial activity, can also be produced by green synthesis. The aims of this study were to (i) characterise green synthesized AgNPs using microwave-assisted aqueous extracts of Galium aparine (G-AgNPs) and Helichrysum arenarium (H-AgNPs) and (ii) investigate the combined antimicrobial effects of the G- and H-AgNPs in different ratios. Nanoparticle formation and reactions were determined with UV-Vis spectroscopy. The G-AgNPs were 52.0±10.9 nm in size, with a 0.285±0.034 polydispersity index (PDI), and a -17.9±0.9 mV zeta potential. For H-AgNPs these characteristics were 23.9±1.0 nm, 0.280±0.032, and -21.3±2.7 mV, respectively. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that the particles were monodisperse and spherical. The Fourier transform-infrared spectroscopy (FT-IR) results showed the presence of reducing agents that stabilised the AgNPs. Three different nanoformulations (NF-1, NF-2, and NF-3) were prepared by combining these two synthesised nanoparticles in different ratios and their antimicrobial activity was tested against E. coli, S. aureus, C. albicans, and A. flavus. Our study is the first to show that combining AgNPs from two different biological sources can produce effective nanoformulations with improved antibacterial activity against E. coli and S. aureus. These nanoformulations showed lower minimum inhibitory concentrations (31.25 µg/mL against E. coli with all NFs; 62.5 µg/mL for NF-1 and 125 µg/mL for NF-2/3 against S. aureus) than G-AgNPs (62.5 µg/mL for E. coli) or H-AgNPs (125 µg/mL for S. aureus) alone. Their high combined inhibitory effect against E. coli (NF-1-3) was synergistic and against S. aureus (NF-2 and NF-3) potentially additive. Considering such promising results, we believe our study provides some direction for new research and strategies in antimicrobial therapeutics.
Collapse
Affiliation(s)
- Cilem Ozdemir
- Yıldız Technical University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
- Mugla Sıtkı Kocman University Faculty of Medicine, Department of Medical Biology, Mugla, Turkey
| | - Merve Gencer
- Yıldız Technical University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Irem Coksu
- Yıldız Technical University Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Istanbul, Turkey
| | - Tulin Ozbek
- Yıldız Technical University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Serap Derman
- Yıldız Technical University Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
9
|
Liao ZH, Huang HT, Lin YR, Hu CY, Kai YH, Lin JJ, Nan FH. Effect of nanoclay supported nanosilver on the growth inhibition of aquatic pathogens and immunomodulatory effect in Penaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108673. [PMID: 36914102 DOI: 10.1016/j.fsi.2023.108673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid of nanosilver and nanoscale silicate platelet (AgNSP) is a safe, non-toxic nanomaterial which has been applied in medical use due to its strong antibacterial activity. The application of AgNSP in aquaculture was first proposed in the present study by evaluating the in vitro antibacterial activities against four aquatic pathogens, in vitro effects toward shrimp haemocytes as well as the immune responses and disease resistance in Penaeus vannamei fed with AgNSP for 7 days. For evaluating the antibacterial activities of AgNSP in culture medium, the minimum bactericidal concentration (MBC) values against Aeromonas hydrophila, Edwardsiella tarda, Vibrio alginolyticus and Vibrio parahaemolyticus were 100, 15, 625 and 625 mg/L, respectively. Moreover, the inhibition of pathogen growth over a period of 48 h could be achieved by the appropriate treatment of AgNSP in culturing water. In freshwater containing bacterial size of 103 and 106 CFU/mL, the effective doses of AgNSP against A. hydrophila were 12.5 and 450 mg/L, respectively while the effective doses against E. tarda were 0.2 and 50 mg/L, respectively. In seawater with same bacterial size, the effective doses against V. alginolyticus were 150 and 2000 mg/L, respectively while the effective doses against V. parahaemolyticus were 40 and 1500 mg/L, respectively. For the in vitro immune tests, the superoxide anion production and phenoloxidase activity in haemocytes were elevated after in vitro incubation with 0.5-10 mg/L of AgNSP. In the assessment of dietary supplemental effects of AgNSP (2 g/kg), no negative effect on the survival was found at the end of 7 day feeding trail. In addition, the gene expression of superoxide dismutase, lysozyme and glutathione peroxidase were up-regulated in haemocytes taken from shrimps received AgNSP. The following challenge test against Vibrio alginolyticus showed that the survival of shrimp fed with AgNSP was higher than that of shrimp fed with control diet (p = 0.083). Dietary AgNSP improved the Vibrio resistance of shrimp by increasing 22.7% of survival rate. Therefore, AgNSP could potentially be used as a feed additive in shrimp culture.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan, ROC
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan, ROC
| | - Yu-Ru Lin
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan, ROC
| | - Chi-Yun Hu
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan, ROC
| | - Yu-Hsuan Kai
- National Museum of Marine Science and Technology, No.367 Beining Road, Zhongzheng District, Keelung City, 202010, Taiwan, ROC
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei City, 10617, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan, ROC.
| |
Collapse
|
10
|
Mazher M, Ishtiaq M, Hamid B, Haq SM, Mazhar A, Bashir F, Mazhar M, Mahmoud EA, Casini R, Alataway A, Dewidar AZ, Elansary HO. Biosynthesis and Characterization of Calcium Oxide Nanoparticles from Citrullus colocynthis Fruit Extracts; Their Biocompatibility and Bioactivities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2768. [PMID: 37049061 PMCID: PMC10096045 DOI: 10.3390/ma16072768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Modern nanotechnology encompasses every field of life. Nowadays, phytochemically fabricated nanoparticles are being widely studied for their bioactivities and biosafety. The present research studied the synthesis, characterization, stability, biocompatibility, and in vitro bioactivities of calcium oxide nanoparticles (CaONPs). The CaONPs were synthesized using Citrullus colocynthis ethanolic fruit extracts. Greenly synthesized nanoparticles had an average size of 35.93 ± 2.54 nm and showed an absorbance peak at 325 nm. An absorbance peak in this range depicts the coating of phenolic acids, flavones, flavonols, and flavonoids on the surface of CaONPs. The XRD pattern showed sharp peaks that illustrated the preferred cubic crystalline nature of triturate. A great hindrance to the use of nanoparticles in the field of medicine is their extremely reactive nature. The FTIR analysis of the CaONPs showed a coating of phytochemicals on their surface, due to which they showed great stability. The vibrations present at 3639 cm-1 for alcohols or phenols, 2860 cm-1 for alkanes, 2487 cm-1 for alkynes, 1625 cm-1 for amines, and 1434 cm-1 for carboxylic acids and aldehydes show adsorption of phytochemicals on the surface of CaONPs. The CaONPs were highly stable over time; however, their stability was slightly disturbed by varying salinity and pH. The dialysis membrane in vitro release analysis revealed consistent nanoparticle release over a 10-h period. The bioactivities of CaONPs, C. colocynthis fruit extracts, and their synergistic solution were assessed. Synergistic solutions of both CaONPs and C. colocynthis fruit extracts showed great bioactivity and biosafety. The synergistic solution reduced cell viability by only 14.68% and caused only 16% hemolysis. The synergistic solution inhibited Micrococcus luteus slightly more effectively than streptomycin, with an activity index of 1.02. It also caused an 83.87% reduction in free radicals.
Collapse
Affiliation(s)
- Mubsher Mazher
- Department of Botany, Mirpur University of Science and Technology (MUST), Mirpur 10040, Pakistan; (M.I.); (F.B.); (M.M.)
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology (MUST), Mirpur 10040, Pakistan; (M.I.); (F.B.); (M.M.)
| | - Bilqeesa Hamid
- Department of Chemistry, University of Kashmir Srinagar, Srinagar 190006, India;
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi 0162, Georgia;
| | - Atiya Mazhar
- Department of Chemistry, Government Post Graduate College for Women, Bhimber 10038, Pakistan;
| | - Faiza Bashir
- Department of Botany, Mirpur University of Science and Technology (MUST), Mirpur 10040, Pakistan; (M.I.); (F.B.); (M.M.)
- Biological Research Center, Institute of Plant Biology, 6726 Szeged, Hungary
| | - Mussaddaq Mazhar
- Department of Botany, Mirpur University of Science and Technology (MUST), Mirpur 10040, Pakistan; (M.I.); (F.B.); (M.M.)
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| | - Ryan Casini
- School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, USA;
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (A.Z.D.)
| | - Ahmed Z. Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (A.Z.D.)
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (A.Z.D.)
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Mumtaz S, Ali S, Mumtaz S, Mughal TA, Tahir HM, Shakir HA. Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Saleh M, Essawy E, Shaalan M, Osman S, Ahmed F, El-Matbouli M. Therapeutic Intervention with Dietary Chitosan Nanoparticles Alleviates Fish Pathological and Molecular Systemic Inflammatory Responses against Infections. Mar Drugs 2022; 20:md20070425. [PMID: 35877718 PMCID: PMC9315998 DOI: 10.3390/md20070425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Marine bio-sourced chitosan nanoparticles (CSNP) are antimicrobial and immunomodulatory agents beneficial for fish medicine. Herein, dietary CSNP was investigated for the amelioration of the systemic inflammatory responses of an induced fish model. One hundred and forty-four rainbow trout were assigned to one pathogen-free and non-supplemented group (negative control), and three challenged groups: non-supplemented (positive control), CSNP-preventive, and CSNP-therapeutic. After a feeding experiment extended for 21 days, the organosomatic indices (OSI) and molecular aspects were assessed. After a challenge experiment extended for further 28 days, CSNP-therapeutic intervention was assessed on fish survival and systemic inflammatory responses on pathology, histo-morphology, and molecular aspects. With CSNP administration, OSI nonsignificantly decreased and the relative expression of targeted inflammatory-mediator genes was significantly increased. The CSNP-therapeutic fish showed an RPS of 80% as compared to the positive control group, and CSNP-therapeutic administration retained the highest gene expression augmentation up to 28 days after the challenge. Notably, the splenic reticulin fibers framework of the CSNP-therapeutic group retained the highest integrity among the groups during the infection. After recovery, reticulin fibers density in the CSNP-therapeutic samples was significantly higher than in the negative control group, which indicates high innate immunity. Thus, CSNP showed promising biotherapeutic features enhancing fish resistance against infections.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (E.E.); (M.S.); (M.E.-M.)
- Correspondence: (M.S.); (F.A.)
| | - Ehab Essawy
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (E.E.); (M.S.); (M.E.-M.)
- Department of Chemistry, Biochemistry Division, Faculty of Science, Helwan University, Cairo 11790, Egypt
- Bioinformatics Center, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Mohamed Shaalan
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (E.E.); (M.S.); (M.E.-M.)
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | - Shaaban Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.S.); (F.A.)
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (E.E.); (M.S.); (M.E.-M.)
- Division of Aquatic Animal Health, School of Veterinary Medicine, Badr Universiy, Cairo 11829, Egypt
| |
Collapse
|
13
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Krishnan K, Nabila M. Streptomyces sp. Vitnk9 derived compound against fish bacterial pathogens. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_296_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9913179. [PMID: 34484407 PMCID: PMC8416379 DOI: 10.1155/2021/9913179] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Rutin is a unique antioxidant flavonoid that is mainly found in fruit, vegetables, cereals, and many other plant-based human diets. This review aims to highlight the in vitro anticancer properties of rutin including combination therapeutic strategies. Literature resources were gathered through PubMed, Scopus, Web of Science, and Google Scholar databases that cover the period of 1995–2021. Rutin is demonstrated to inhibit the proliferation of breast, colon, lung, and prostate cancers and other tumors. Furthermore, rutin alone or in combination with other therapeutic agents has been shown to regulate several signalling pathways involving the Ras/Raf and PI3K/Akt, MAPK, and TGF-β2/Smad2/3Akt/PTEN, etc., which are related to the processes of carcinogenesis and induction of apoptosis. The combination of rutin with other chemotherapy drugs may benefit on prevention of tumor cells by decreasing drug resistance and chemotherapy side effects. Moreover, rutin induces apoptosis synergistically with the therapeutic agent. More in vivo and clinical data are however needed to evaluate the true potential of rutin as an anticancer agent as an adjuvant. The present review highlights the effects of rutin which can be a promising candidate in combination with other antitumor drugs or alone for cancer treatment in vitro. Also, rutin can lead to decrease in drug resistance and chemotherapeutic side effects.
Collapse
|
16
|
Zhou L, Cai L, Ruan H, Zhang L, Wang J, Jiang H, Wu Y, Feng S, Chen J. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int J Biol Macromol 2021; 183:1145-1154. [PMID: 33965491 DOI: 10.1016/j.ijbiomac.2021.05.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Burn injury has posed devastating burdens on the public health due to its inevitable damage to the skin structure resulting in the increased risk of infection. Therefore, it is highly demanding to develop efficacious antibacterial wound-healing dressing. Despite the favourable wound-healing activities, the curative efficacy of phytochemical compounds of quercetin (Qe) and its derivatives is limited by their poor water solubility. Here, we have fabricated a novel electrospun nanofiber membrane (ENM) consisting of polycaprolactone (PCL), chitosan oligosaccharides (COS), and Qe/Rutin (Ru) as the potential bioactive dressing for wound healing. The incorporation of chitosan oligosaccharides (COSs) in the PCL scaffold at the optimized molar ratio not only contributed to the improved hydrophilicity and water absorption performance of the ENM but effectively increased the specific surface area of the formed nanofibers. In particular, the antioxidant and antibacterial activities of the Qe/rutin-loaded nanofiber membranes were tested, which revealed that the PCL-COS-Qe membrane exhibited superior performance among all nanofiber membranes. Therefore, the developed PCL-COS-Qe/Ru nanofiber membranes hold enormous potential as healthcare products, such as wound dressings for burn injuries.
Collapse
Affiliation(s)
- Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Hongjie Ruan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing 210004, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Jun Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shanwu Feng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing 210004, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|