1
|
Sharma T, Das N, Mehta Kakkar P, Mohapatra RK, Pamidimarri S, Singh RK, Kumar M, Guldhe A, Nayak M. Microalgae as an emerging alternative raw material of docosahexaenoic acid and eicosapentaenoic acid - a review. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40188418 DOI: 10.1080/10408398.2025.2486267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely applied due to their nutraceutical and healthcare benefits. With the rising rates of chronic diseases, there is a growing consumer interest and demand for sustainable dietary sources of n-3 PUFAs. Currently, microalgae have emerged as a sustainable source of n-3 PUFAs which are rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regarded as promising alternatives to conventional sources (seafood) that cannot meet the growing demands of natural food supplements. This review provides a comprehensive overview of recent advancements in strategies such as genetic engineering, mutagenesis, improving photosynthetic efficiency, nutritional or environmental factors, and cultivation approaches to improve DHA and EPA production efficiency in microalgae cells. Additionally, it explains the application of DHA and EPA-rich microalgae in animal feed, human nutrition- snacks, and supplements to avoid malnutrition and non-communicable diseases.
Collapse
Affiliation(s)
- Tanishka Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nisha Das
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Mehta Kakkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Sudheer Pamidimarri
- Department of Molecular Biology and Genetics, Gujarat Biotechnology University, Gandhinagar, India
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, India
| | - Manoranjan Nayak
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
2
|
Dubey S, Chen CW, Patel AK, Bhatia SK, Singhania RR, Dong CD. Development in health-promoting essential polyunsaturated fatty acids production by microalgae: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:847-860. [PMID: 38487279 PMCID: PMC10933236 DOI: 10.1007/s13197-023-05785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 03/17/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.
Collapse
Affiliation(s)
- Siddhant Dubey
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Reeta Rani Singhania
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
3
|
Liu J, Ding X, Xia X, Zhou L, Liu W, Lai Y, Ke Z, Tan Y. Dissolved organic phosphorus promotes Cyclotella growth and adaptability in eutrophic tropical estuaries. Appl Environ Microbiol 2024; 90:e0163723. [PMID: 38112726 PMCID: PMC10807451 DOI: 10.1128/aem.01637-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Dissolved organic phosphorus (DOP) is an important nutrient for phytoplankton growth in oligotrophic oceans. However, little is known about the impact of DOP on phytoplankton growth in eutrophic waters. In the present study, we conducted field monitoring as well as in situ and laboratory experiments in the Pearl River estuary (PRE). Field observations showed an increase in the nitrogen-to-phosphorus ratio and DOP in recent years in the PRE. The phytoplankton community was dominated by nanophytoplankton Cyclotella in the upper and middle estuary, with high concentrations of DOP and light limitation during the ebb stage of the spring to neap tide in summer. The relative abundance of Cyclotella in natural waters was higher after enrichment with estuarine water with a background of 0.40-0.46 µM DOP, even when dissolved inorganic phosphorus was sufficient (0.55-0.76 µM). In addition, the relative abundance of Cyclotella in natural waters was higher after enrichment with phosphoesters. Laboratory culture results also confirmed that phosphoesters can enhance the growth rate of Cyclotella cryptica. Our study highlights that Cyclotella can become the dominant species in estuaries with increased levels of phosphoesters and low and fluctuating light adaptability and under the joint effect of dynamic processes such as upwelling and tides. Our results provide new insights into the role of Cyclotella in biogeochemical cycles affected by DOP utilization and potential applications in relieving the hypoxia of tropical eutrophic estuaries.IMPORTANCEThis study provides evidence that Cyclotella can become the dominant species in estuaries with increased levels of phosphoesters and low and fluctuating light adaptability and under the joint effect of dynamic processes such as upwelling and tides. Our study provides new insights into the role of Cyclotella in biogeochemical cycles affected by dissolved organic phosphorus utilization, especially affected by anthropogenic inputs and climate change. Potential applications include relieving the hypoxia of tropical eutrophic estuaries.
Collapse
Affiliation(s)
- Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiang Ding
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Linbin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Weiwei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjiao Lai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Morra S, Lanzilli M, Grazioso A, Cupo A, Landi S, Nuzzo G, Castiglia D, Gallo C, Manzo E, Fontana A, d’Ippolito G. Potential of Lipid Biosynthesis under Heterotrophy in the Marine Diatom Cyclotella cryptica. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:17607-17615. [PMID: 38130845 PMCID: PMC10731643 DOI: 10.1021/acssuschemeng.3c02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Despite the theoretical high productivity, microalgae-based oil production is not economically sustainable due to the high cost of photoautotrophic cultures. Heterotrophic growth is a suitable economic alternative to overcoming light dependence and climatic/geographic fluctuations. Here we report data about growth performance, biomass production, and lipid composition of the marine diatom Cyclotella cryptica, chosen as a model strain for biodiesel production in heterothrophy. A repeated-batch process of heterotrophic cultivation has also been investigated to assess the robustness and phenotypic stability. The process consisting of six constant cycle repetitions was carried out for 42 days and led to an average dry biomass production of 1.5 ± 0.1 g L-1 of which 20% lipids composed of 60% triglycerides, 20% phospholipids. and 20% glycolipids. The major fatty acids were C16:0 (∼26%), C16:1 ω-7 (∼57%), and C20:5 ω-3 (∼12%), with a significant reduction in the unsaturated fatty acids in comparison to other microalgae grown in heterotrophy. Fatty acids were differently distributed among the glycerolipid classes, and the lipid composition was used to compare the potential properties of C. cryptica oil with traditional vegetable biofuels.
Collapse
Affiliation(s)
- Salvatore Morra
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Mariamichela Lanzilli
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Angela Grazioso
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
- Department
of Biology, University of Naples “Federico
II”, Via Cinthia, I-80126 Napoli, Italy
| | - Adelaide Cupo
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Simone Landi
- Department
of Biology, University of Naples “Federico
II”, Via Cinthia, I-80126 Napoli, Italy
| | - Genoveffa Nuzzo
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Daniela Castiglia
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Carmela Gallo
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Emiliano Manzo
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Angelo Fontana
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
- Department
of Biology, University of Naples “Federico
II”, Via Cinthia, I-80126 Napoli, Italy
| | - Giuliana d’Ippolito
- National
Research Council (CNR), Institute of Biomolecular
Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
5
|
Su C, Cao Z, Liu J, Sun X, Qiu K, Mu Y, Cong X, Wang X, Chen X, Jia N, Feng C. The hierarchical porous structures of diatom biosilica-based hemostat: From selective adsorption to rapid hemostasis. J Colloid Interface Sci 2023; 651:544-557. [PMID: 37562297 DOI: 10.1016/j.jcis.2023.07.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Here, we developed a Ca2+ modified diatom biosilica-based hemostat (DBp-Ca2+) with a full scale hierarchical porous structure (pore sizes range from micrometers to nanometers). The unique porous size in stepped arrangement of DBp-Ca2+give it selective adsorption capacity during coagulation process, resulted in rapid hemorrhage control. Based on in vitro and in vivo studies, it was confirmed that the primary micropores of DBp-Ca2+gave it high porosity to hold water (water absorption: 78.46 ± 1.12 %) and protein (protein absorption: 83.7 ± 1.33 mg/g). Its secondary mesopores to macropores could reduce of water diffusion length to accelerate blood exchange (complete within 300 ms). The tertiary stacking pores of DBp-Ca2+ could absorb platelets and erythrocytes to reduce more than 50 % of thrombosis time, and provided enough contact between Ca active site and coagulation factors for triggering clotting cascade reaction. This work not only developed a novel DBs based hemostat with efficient hemorrhage control, but also provided new insights to study procoagulant mechanism of inorganic hemostat with hierarchical porous structure from selective adsorption to rapid hemostasis.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jiahao Liu
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Kaijin Qiu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, 572024, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Nan Jia
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China.
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, 572024, Hainan Province, China.
| |
Collapse
|
6
|
Hernanz-Torrijos M, Ortega MJ, Úbeda B, Bartual A. Polyunsaturated Aldehydes Profile in the Diatom Cyclotella cryptica Is Sensitive to Changes in Its Phycosphere Bacterial Assemblages. Mar Drugs 2023; 21:571. [PMID: 37999395 PMCID: PMC10672285 DOI: 10.3390/md21110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Diatoms are responsible for the fixation of ca. 20% of the global CO2 and live associated with bacteria that utilize the organic substances produced by them. Current research trends in marine microbial ecology show which diatom and bacteria interact mediated through the production and exchange of infochemicals. Polyunsaturated aldehydes (PUA) are organic molecules released by diatoms that are considered to have infochemical properties. In this work, we investigated the possible role of PUA as a mediator in diatom-bacteria interactions. To this end, we compare the PUA profile of a newly isolated oceanic PUA producer diatom, Cyclotella cryptica, co-cultured with and without associated bacteria at two phosphate availability conditions. We found that the PUA profile of C. cryptica cultured axenically was different than its profile when it was co-cultured with autochthonous (naturally associated) and non-autochthonous bacteria (unnaturally inoculated). We also observed that bacterial presence significantly enhanced diatom growth and that C. cryptica modulated the percentage of released PUA in response to the presence of bacteria, also depending on the consortium type. Based on our results, we propose that this diatom could use released PUA as a specific organic matter sign to attract beneficial bacteria for constructing its own phycosphere, for more beneficial growth.
Collapse
Affiliation(s)
- María Hernanz-Torrijos
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (B.Ú.)
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - María J. Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Bárbara Úbeda
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (B.Ú.)
| | - Ana Bartual
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (B.Ú.)
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
7
|
Ma R, You Y, Liu X, Ho SH, Xie Y, Chen J. Highly efficient co-production of fucoxanthin and eicosapentaenoic acid by heterotrophic cultivation of a newly isolated microalga Nitzschia sp. FZU62. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Fierli D, Aranyos A, Barone ME, Parkes R, Touzet N. Influence of exogenous phytohormone supplementation on the pigment and fatty acid content of three marine diatoms. Appl Microbiol Biotechnol 2022; 106:6195-6207. [PMID: 36040486 DOI: 10.1007/s00253-022-12140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Diatoms are ubiquitous photosynthetic microorganisms with great potential for biotechnological applications. However, their commercialisation is hampered by production costs, requiring hence optimisation of cultivation methods. Phytohormones are plant growth regulators which may be used to influence physiological processes in microalgae, including diatoms. In this study, the model species Phaeodactylum tricornutum (Phaeodactylaceae) and two Irish isolates of Stauroneis sp. (Stauroneidaceae) and Nitzschia sp. (Bacillariaceae) were grown with varying amounts of the phytohormones indoleacetic acid (IAA), gibberellic acid (GA3), methyl jasmonate (MJ), abscisic acid (ABA) or salicylic acid (SA), and their influence on pigment and fatty acid profiles was monitored. The application of GA3 (200 mg/l) stimulated the growth of P. tricornutum which accumulated 52% more dry biomass compared to the control and concomitantly returned the highest eicosapentaenoic acid (EPA) yield (0.6 mg/l). The highest fucoxanthin yield (0.18 mg/l) was obtained for P. tricornutum cultivated with GA3 (2 mg/l) supplementation. In Stauroneis sp., SA (1 mg/l) had the most positive effect on EPA, the content of which was enhanced up to 45.7 μg/mg (4.6% of total dry weight). The SA (1 mg/l) treatment also boosted carotenogenesis in Nitzschia sp., leading to 1.7- and 14-fold increases in fucoxanthin and β-carotene compared to the control, respectively. Of note, MJ (0.5 mg/l) increased the EPA content of all diatom species compared to their controls. These results indicate that phytohormone-based treatments can be used to alter the pigment and lipid content of microalgae, which tend to respond in dose- and species-specific manners to individual compounds.Key points• Response to phytohormones was investigated in diatoms from distinct families.• MJ (0.5 mg/l) caused an increase in EPA cellular content in all three diatoms.• Phytohormones mostly caused dose-dependent and species-specific responses.
Collapse
Affiliation(s)
- David Fierli
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland.
| | - Anita Aranyos
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Maria Elena Barone
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Rachel Parkes
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Nicolas Touzet
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| |
Collapse
|
9
|
Santin A, Russo MT, Ferrante MI, Balzano S, Orefice I, Sardo A. Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture. Molecules 2021; 26:7697. [PMID: 34946780 PMCID: PMC8707597 DOI: 10.3390/molecules26247697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs' production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs' accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs' profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs' extraction and purification from microalgal biomass.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Monia Teresa Russo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Sergio Balzano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
- Department of Marine Microbiology and Biogeochemistry, Netherland Institute for Sea Research, Landsdiep 4, 1793 AB Texel, The Netherlands
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
10
|
Castiglia D, Landi S, Esposito S. Advanced Applications for Protein and Compounds from Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1686. [PMID: 34451730 PMCID: PMC8398235 DOI: 10.3390/plants10081686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
Algal species still show unrevealed and unexplored potentiality for the identification of new compounds. Photosynthetic organisms represent a valuable resource to exploit and sustain the urgent need of sustainable and green technologies. Particularly, unconventional organisms from extreme environments could hide properties to be employed in a wide range of biotechnology applications, due to their peculiar alleles, proteins, and molecules. In this review we report a detailed dissection about the latest and advanced applications of protein derived from algae. Furthermore, the innovative use of modified algae as bio-reactors to generate proteins or bioactive compounds was discussed. The latest progress about pharmaceutical applications, including the possibility to obtain drugs to counteract virus (as SARS-CoV-2) were also examined. The last paragraph will survey recent cases of the utilization of extremophiles as bio-factories for specific protein and molecule production.
Collapse
Affiliation(s)
- Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy;
| |
Collapse
|