1
|
Rosic N. Unveiling the Anti-Aging Potential of Marine Natural Bioproducts. Mar Drugs 2025; 23:165. [PMID: 40278286 PMCID: PMC12028505 DOI: 10.3390/md23040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Aging is a natural process resulting in the progressive impairment of multiple functions in the human body, leading to a decline in cellular functionality and the development of aging-related diseases. External stress factors, such as ultraviolet (UV) radiation, pollution, and toxin exposure, increase oxidative stress, damage cellular repair mechanisms, and speed up aging processes. With the rise in the world's aging population, there are enlarged demands for the use of sustainable natural products in food, nutrient supplements and cosmetics that can slow down aging and prolong healthy life and longevity. Algae, including both macroalgae and microalgae, have been recognised as a source of valuable proteins, amino acids, fatty acids, vitamins, and minerals useful for human consumption and medical applications. With increasing demands for nutraceutical and pharmaceutical bioproducts from environmentally friendly resources, the biotechnological industry, over recent decades, has had to provide new, advanced solutions using modern high-throughput omics technologies. The application of proteomics in the area of discoveries of natural products with anti-aging properties has become more popular for wide industry applications. New proteomics profiling provides a better understanding of changes occurring in protein and peptide content, their structure, function and interactions, as well as the regulatory processes and molecular pathways. Mass spectrometry-based proteomics has been used for a wide range of applications including protein identification, characterisation, as well as quantification of proteins within the proteome and sub-proteome. The application of chemical proteomics facilitated the identification of natural products approach and included the synthesis of probes and target fishing, allowing the advanced identification of proteins of interest. This review focuses on marine macro- and microalgal anti-aging compounds and novel proteomics approaches, providing recent experimental evidence of their involvement in anti-aging processes that should facilitate their use in innovative approaches and sustainable biotechnological applications.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia;
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
2
|
Seydi E, Barzegar M, Nazemi M, Mohsenifar Z, Shahbazi N, Jafarian-Dehkordi A, Pourahmad J. Toxicity Effect of Hypnea flagelliformis Algae on Cancerous Mitochondria Obtained from Rat Model of Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2024; 25:4273-4279. [PMID: 39733419 PMCID: PMC12008340 DOI: 10.31557/apjcp.2024.25.12.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Hepatocellular carcinoma (HCC) is recognized as one of the major public health problems and deadly malignancies worldwide. Today, the use of compounds of natural origin in the treatment of cancer and other diseases has been of interest to researchers. Marine compounds such as algae have anti-cancer effects. In addition, Sea algae have nutritional value. This research is designed to investigate the cytotoxic effects of Hypnea flagelliformis (H. flagelliformis) extracts (methanolic, diethyl ether and n-hexane) on HCC mitochondria. MATERIAL AND METHOD HCC was induced by diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) in rats. Then, toxicity parameters were evaluated. RESULTS The results showed that all H. flagelliformis extracts (250, 500 and 1000 µg/ml) significantly caused toxicity in HCC mitochondria, and no effect on healthy mitochondria was reported. CONCLUSION The results indicate that the use of H. flagelliformis along with selected drugs in the treatment of HCC can help in the treatment of this cancer.
Collapse
MESH Headings
- Animals
- Rats
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/chemically induced
- Diethylnitrosamine/toxicity
- Male
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/chemically induced
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/drug therapy
- Mitochondria/drug effects
- Mitochondria/pathology
- Disease Models, Animal
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/pathology
- Mitochondria, Liver/metabolism
- Rats, Wistar
- Plant Extracts/pharmacology
- 2-Acetylaminofluorene/toxicity
- Rhodophyta
- Seaweed
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mahsa Barzegar
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Melika Nazemi
- Persian Gulf and Oman Sea Ecological Research Organization, Iranian Fisheries Research Organization, Agricultural Research, Education and Extension Organization (AREEO) Bandar Abbas, Iran.
| | - Zhaleh Mohsenifar
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nazanin Shahbazi
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Abbas Jafarian-Dehkordi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Goutas A, Goutzourelas N, Kevrekidou A, Kevrekidis DP, Malea P, Virgiliou C, Assimopoulou AN, Trachana V, Kollatos N, Moustafa T, Liu M, Lin X, Komiotis D, Stagos D. Hypnea musciformis Seaweed Extract Protected Human Mesenchymal Stem Cells From Oxidative Stress Through NRF2 Activation. Food Sci Nutr 2024; 12:10816-10835. [PMID: 39723057 PMCID: PMC11666820 DOI: 10.1002/fsn3.4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024] Open
Abstract
Previous studies have shown that Hypnea musciformis seaweed extracts (HMEs) possess antioxidant properties, but the molecular mechanisms accounting for this activity are not known. Thus, the present study investigated the molecular mechanisms through which HME exerted its antioxidant activity in human mesenchymal stem cells (WJ-MSCs). After the isolation of HME, its chemical composition was analyzed with gas chromatography mass spectrometry, indicating that it contained amino acids, organic acids, organic amides, sugar alcohols, saturated fatty acids, hydrogenated diterpene alcohols, and other organic compounds. Afterward, HME was shown in vitro to scavenge DPPH·, ABTS·+, ·OH, and O2 ·- radicals, possess reducing activity, and protect from ROO·-induced DNA strand breakage. Finally, the results showed that HME treatment of WJ-MSCs prevented H2O2-induced oxidative stress by decreasing lipid peroxidation, protein oxidation, reactive oxygen species levels, and DNA damage and by increasing glutathione levels. Moreover, our findings showed for the first time that HME's antioxidant activity in WJ-MSCs was mediated through the activation of NRF2, which upregulated the expression of the antioxidant proteins GCLC, GSR, HMOX1, SOD1, TXN, and GPX1. These results provide new insights into H. musciformis' antioxidant properties, which could help substantially its use as a food supplement or for developing biofunctional foods.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
- Department of Biology, Faculty of MedicineUniversity of ThessalyLarissaGreece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
- Environmental Engineering Laboratory, Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Paraskevi Malea
- Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Andreana N. Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Varvara Trachana
- Department of Biology, Faculty of MedicineUniversity of ThessalyLarissaGreece
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Tafa Moustafa
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiukun Lin
- Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| |
Collapse
|
4
|
Al-Thani RF, Yasseen BT. Methods Using Marine Aquatic Photoautotrophs along the Qatari Coastline to Remediate Oil and Gas Industrial Water. TOXICS 2024; 12:625. [PMID: 39330553 PMCID: PMC11435476 DOI: 10.3390/toxics12090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed.
Collapse
|
5
|
Farjallah A, Fillion M, Guéguen C. Metabolic responses of Euglena gracilis under photoheterotrophic and heterotrophic conditions. Protist 2024; 175:126035. [PMID: 38688055 DOI: 10.1016/j.protis.2024.126035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.
Collapse
Affiliation(s)
- Asma Farjallah
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Fillion
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Céline Guéguen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
6
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
8
|
Goda MS, El-Kattan N, Abdel-Azeem MA, Allam KAM, Badr JM, Nassar NA, Almalki AJ, Alharbi M, Elhady SS, Eltamany EE. Antimicrobial Potential of Different Isolates of Chaetomium globosum Combined with Liquid Chromatography Tandem Mass Spectrometry Chemical Profiling. Biomolecules 2023; 13:1683. [PMID: 38136556 PMCID: PMC10742071 DOI: 10.3390/biom13121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
The antimicrobial resistance of pathogenic microorganisms against commercial drugs has become a major problem worldwide. This study is the first of its kind to be carried out in Egypt to produce antimicrobial pharmaceuticals from isolated native taxa of the fungal Chaetomium, followed by a chemical investigation of the existing bioactive metabolites. Here, of the 155 clinical specimens in total, 100 pathogenic microbial isolates were found to be multi-drug resistant (MDR) bacteria. The Chaetomium isolates were recovered from different soil samples, and wild host plants collected from Egypt showed strong inhibitory activity against MDR isolates. Chaetomium isolates displayed broad-spectrum antimicrobial activity against C. albicans, Gram-positive, and Gram-negative bacteria, with inhibition zones of 11.3 to 25.6 mm, 10.4 to 26.0 mm, and 10.5 to 26.5 mm, respectively. As a consecutive result, the minimum inhibitory concentration (MIC) values of Chaetomium isolates ranged from 3.9 to 62.5 µg/mL. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis was performed for selected Chaetomium isolates with the most promising antimicrobial potential against MDR bacteria. The LC-MS/MS analysis of Chaetomium species isolated from cultivated soil at Assuit Governate, Upper Egypt (3), and the host plant Zygophyllum album grown in Wadi El-Arbaein, Saint Katherine, South Sinai (5), revealed the presence of alkaloids as the predominant bioactive metabolites. Most detected bioactive metabolites previously displayed antimicrobial activity, confirming the antibacterial potential of selected isolates. Therefore, the Chaetomium isolates recovered from harsh habitats in Egypt are rich sources of antimicrobial metabolites, which will be a possible solution to the multi-drug resistant bacteria tragedy.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| | - Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza 11562, Egypt;
| | - Mohamed A. Abdel-Azeem
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Al-Arish, North Sinai 45511, Egypt;
| | - Kamilia A. M. Allam
- Department of Epidemiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza 11562, Egypt;
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| | | | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.J.A.); (M.A.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.J.A.); (M.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| |
Collapse
|
9
|
Munvera AM, Alfred Ngenge T, Ouahouo BMW, Kucukaydin S, Nyemb JN, Fokam Mafo MA, Djappa Tchapo EC, Mkounga P, Nkengfack AE. Cholinesterase, α-glucosidase, tyrosinase and urease inhibitory activities of compounds from fruits of Rinorea oblongifolia C.H. Wright (Violaceae). Nat Prod Res 2023; 37:4169-4180. [PMID: 36757210 DOI: 10.1080/14786419.2023.2176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
From Rinorea oblongifolia fruits, 3-Nor-4β-friedelan-24-ol (1) and 3-decyl-6,7,8-trimethoxy-2H,5H-furo[4,3,2-de]isochromene-2,5-dione (4), new derivatives alongside, 28-hydroxyfriedelan-3-one (2), friedelin (3), 3,3',4,4',5'-pentamethylcoruleoellagic acid (5), hexamethylcoruleoellagic acid (6), 3',4,4',5,5'-pentamethylcoruleoellagic acid (7), and fatty compounds 8-11 were isolated and characterized using HRESIMS, EIMS, 1D and 2D NMR. In vitro enzyme inhibition of compounds 1, 2, 4, 5, 6 and 7 were evaluated on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, urease and tyrosinase. Against AChE and BChE, the phenolic compounds 4, 5, 6, and 7 had good activity probably due to the phenolic nature and methoxy substituents. Compounds 4, 5, 6 and 7 exhibited good α-glucosidase inhibition especially compound 4 whose IC50 = 42.45 ± 0.46 µg/mL was close that of acarbose (IC50 = 20.52 ± 0.84 µg/mL) standard drug. Urease and tyrosinase were appreciably inhibited by the compounds. Overall results of enzyme inhibitory assays indicate Rinorea oblongifolia, fruits and its constituents as potential remedy for enzymatic disorders.
Collapse
Affiliation(s)
- Aristide Mfifen Munvera
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde, Cameroon
| | - Tamfu Alfred Ngenge
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla, Turkey
| | | | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla, Turkey
| | - Jean Noel Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, University of Maroua, Kaélé, Cameroon
| | - Marcelle Aude Fokam Mafo
- Institute of Medical Research and Medicinal Plants, Ministre de la Recherche Scientifique et de l'Innovation, Yaoundé, Cameroon
| | | | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde, Cameroon
| | | |
Collapse
|
10
|
Zhang K, Li J, Cheng J, Lin S. Alkaline Phosphatase PhoD Mutation Induces Fatty Acid and Long-Chain Polyunsaturated Fatty Acid (LC-PUFA)-Bound Phospholipid Production in the Model Diatom Phaeodactylum tricornutum. Mar Drugs 2023; 21:560. [PMID: 37999384 PMCID: PMC10672530 DOI: 10.3390/md21110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
With rapid growth and high lipid contents, microalgae have become promising environmentally friendly candidates for renewable biodiesel and health supplements in our era of global warming and energy depletion. Various pathways have been explored to enhance algal lipid production, especially gene editing. Previously, we found that the functional loss of PhoD-type alkaline phosphatase (AP), a phosphorus-stress indicator in phytoplankton, could lead to increased lipid contents in the model diatom Phaeodactylum tricornutum, but how the AP mutation may change lipid composition remains unexplored. This study addresses the gap in the research and investigates the effects of PhoD-type AP mutation on the lipid composition and metabolic regulation in P. tricornutum using transcriptomic and lipidomic analyses. We observed significantly modified lipid composition and elevated production of fatty acids, lysophosphatidylcholine, lysophosphatidylethanolamine, ceramide, phosphatidylinositol bisphosphate, and monogalactosylmonoacylglycerol after PhoD_45757 mutation. Meanwhile, genes involved in fatty acid biosynthesis were upregulated in mutant cells. Moreover, the mutant exhibited increased contents of ω-3 long-chain polyunsaturated fatty acid (LC-PUFA)-bound phospholipids, indicating that PhoD_45757 mutation could improve the potential bioavailability of PUFAs. Our findings indicate that AP mutation could influence cellular lipid synthesis and probably redirect carbon toward lipid production and further demonstrate that AP mutation is a promising approach for the development of high-value microalgal strains for biomedical and other applications.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
11
|
Begolli R, Chatziangelou M, Samiotaki M, Goutas A, Barda S, Goutzourelas N, Kevrekidis DP, Malea P, Trachana V, Liu M, Lin X, Kollatos N, Stagos D, Giakountis A. Transcriptome and proteome analysis reveals the anti-cancer properties of Hypnea musciformis marine macroalga extract in liver and intestinal cancer cells. Hum Genomics 2023; 17:71. [PMID: 37525271 PMCID: PMC10388463 DOI: 10.1186/s40246-023-00517-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. METHODS H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. RESULTS We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. CONCLUSIONS Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.
Collapse
Affiliation(s)
- Rodiola Begolli
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Myrto Chatziangelou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | | | - Andreas Goutas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
- Department of Biology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Sofia Barda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, 12 Binhai Rd, Qinzhou, 535011, Guangxi, China
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| |
Collapse
|
12
|
Radulski DR, Stipp MC, Galindo CM, Acco A. Features and applications of Ehrlich tumor model in cancer studies: a literature review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:22. [PMID: 38751464 PMCID: PMC11093101 DOI: 10.21037/tbcr-23-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 05/18/2024]
Abstract
Background and Objective Breast cancer is the most prevalent cancer worldwide, responsible for a large number of deaths, especially among women. Therapeutic options for breast cancer include surgery, radiotherapy, chemotherapy, hormone therapy, and immunotherapy, but further studies of the pathogenesis of this disease and new treatments are still needed. In vitro and in vivo cancer models are important research tools. Murine Ehrlich tumors are one of these models, especially for hormone-positive breast cancer. The present narrative review discusses characteristics of the Ehrlich tumor model, laboratory manipulations of Ehrlich cells (ECs), and applications in pharmacological, pathological, and translational studies. Methods This review was based on scientific articles, books, and theses on Ehrlich tumors. We searched the PubMed, SciELO, Google Scholar, Google, and Clarivate databases. Key Content and Findings Hormone-positive ECs produce solid Ehrlich carcinoma (SEC) and ascitic Ehrlich carcinoma (AEC), with different features and applications. The presence of SEC or AEC induces systemic and immunological alterations that are similar to cancer in humans, what makes this model applicable to different studies in the cancer field. Conclusions Ehrlich tumors are a relevant tool for improving our understanding of the pathogenesis of breast cancer and investigating the tumor microenvironment, side effects of therapies, and new treatment options. Despite some limitations, such as the absence of an invasive phenotype to produce metastasis, both SEC and AEC are relevant in preclinical and translational studies of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Khedr AIM, Goda MS, Farrag AFS, Nasr AM, Swidan SA, Nafie MS, Abdel-Kader MS, Badr JM, Abdelhameed RFA. Silver Nanoparticles Formulation of Flower Head’s Polyphenols of Cynara scolymus L.: A Promising Candidate against Prostate (PC-3) Cancer Cell Line through Apoptosis Activation. Molecules 2022; 27:molecules27196304. [PMID: 36234842 PMCID: PMC9572662 DOI: 10.3390/molecules27196304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 μg/mL and 0.94 μg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates.
Collapse
Affiliation(s)
- Amgad I. M. Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Abdelaziz F. S. Farrag
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City 11837, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City 11837, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- Correspondence: ; Tel.: +966-545-539-145
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
14
|
Elhady SS, Abdelhameed RFA, Mehanna ET, Wahba AS, Elfaky MA, Koshak AE, Noor AO, Bogari HA, Malatani RT, Goda MS. Metabolic Profiling, Chemical Composition, Antioxidant Capacity, and In Vivo Hepato- and Nephroprotective Effects of Sonchus cornutus in Mice Exposed to Cisplatin. Antioxidants (Basel) 2022; 11:819. [PMID: 35624682 PMCID: PMC9137627 DOI: 10.3390/antiox11050819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Sonchus cornutus (Asteraceae) is a wild. edible plant that represents a plentiful source of polyphenolic compounds. For the first time, the metabolic analysis profiling demonstrated the presence of anthocyanidin glycosides, coumarins, flavonoids and their corresponding glycosides, and phenolic acids. The total phenolic compounds were determined to be 206.28 ± 14.64 mg gallic acid equivalent/gm, while flavonoids were determined to be 45.56 ± 1.78 mg quercetin equivalent/gm. The crude extract of S. cornutus exhibited a significant 1,1-diphenyl-2-picrylhydrazyl free radical scavenging effect with half-maximal inhibitory concentration (IC50) of 16.10 ± 2.14 µg/mL compared to ascorbic acid as a standard (10.64 ± 0.82 µg/mL). In vitro total antioxidant capacity and ferric reducing power capacity assays revealed a promising reducing potential of S. cornutus extract. Therefore, the possible protective effects of S. cornutus against hepatic and renal toxicity induced by cisplatin in experimental mice were investigated. S. cornutus significantly ameliorated the cisplatin-induced disturbances in liver and kidney functions and oxidative stress, decreased MDA, ROS, and NO levels, and restored CAT and SOD activities. Besides, it reversed cisplatin-driven upregulation in inflammatory markers, including iNOS, IL-6, and IL-1β levels and NF-κB and TNF-α expression, and elevated anti-inflammatory IL-10 levels and Nrf2 expression. Additionally, the extract mitigated cisplatin alteration in apoptotic (Bax and caspase-3) and anti-apoptotic (Bcl-2) proteins. Interestingly, hepatic, and renal histopathology revealed the protective impacts of S. cornutus against cisplatin-induced pathological changes. Our findings guarantee a protective effect of S. cornutus against cisplatin-induced hepatic and renal damage via modulating oxidative stress, inflammation, and apoptotic pathways.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.T.M.); (A.S.W.)
| | - Alaa Samir Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.T.M.); (A.S.W.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|