1
|
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M, Chibi F. Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res 2025; 549:109358. [PMID: 39718272 DOI: 10.1016/j.carres.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties. This paper reviews the recent advances on these structure modification methods on fucoidans, ulvans, and carrageenans. The physical, chemical and biological properties influenced by the addition of functional groups are also discussed. In addition, an overview of specific enzymes selectively producing oligosaccharides with improved bioactivities as well as ionic and covalent cross-linking strategies are provided. These targeted methods have the potential to develop novel compounds with outstanding biodegradability and biocompatibility, along with low toxicity suitable for diverse applications in biomedical fields, including drug delivery.
Collapse
Affiliation(s)
- Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco; Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P) , Ben-Guerir, 43150, Morocco.
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Fatiha Chibi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| |
Collapse
|
2
|
Pérez-Cruz C, Moraleda-Montoya A, Liébana R, Terrones O, Arrizabalaga U, García-Alija M, Lorizate M, Martínez Gascueña A, García-Álvarez I, Nieto-Garai JA, Olazar-Intxausti J, Rodríguez-Colinas B, Mann E, Chiara JL, Contreras FX, Guerin ME, Trastoy B, Alonso-Sáez L. Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun 2024; 15:10906. [PMID: 39738071 DOI: 10.1038/s41467-024-55268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans. One of the strains appears to internalize the polymer, while the other strain degrades it extracellularly. Multi-omic approaches show that fucoidan breakdown is mediated by the expression of divergent polysaccharide utilization loci, and endo-fucanases of family GH168 are strongly upregulated during fucoidan digestion. Enzymatic assays and structural biology studies reveal how GH168 endo-fucanases degrade various fucoidan cores from brown algae, assisted by auxiliary hydrolytic enzymes. Overall, our results provide insights into fucoidan processing mechanisms in macroalgal-associated bacteria.
Collapse
Affiliation(s)
- Carla Pérez-Cruz
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Alicia Moraleda-Montoya
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Raquel Liébana
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Oihana Terrones
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Uxue Arrizabalaga
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Mikel García-Alija
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Ana Martínez Gascueña
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Isabel García-Álvarez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - June Olazar-Intxausti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Bárbara Rodríguez-Colinas
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Enrique Mann
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| | - José Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, Tower R, Barcelona, Spain.
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.
| |
Collapse
|
3
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee BH, Lee SY, Shin HS, Kim TG, Song CH, Chai OH. Undaria pinnatifida extract attenuates combined allergic rhinitis and asthma syndrome by the modulation of epithelial cell dysfunction and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719880 DOI: 10.3724/abbs.2024190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Undaria pinnatifida ( U. pinnatifida) has long been a part of the human diet and medicine. Although U. pinnatifida has been reported to have immunomodulatory, anti-inflammatory, anti-diabetic and antibacterial activities, its specific effect on patients with combined allergic rhinitis and asthma syndrome (CARAS) has not been clarified. In this study, the anti-allergic and anti-inflammatory effects of U. pinnatifida extract (UPE) are investigated in a mouse model of ovalbumin (OVA)-induced CARAS. The oral administration of UPE inhibits allergic responses by reducing OVA-specific immunoglobulin levels. As a result, the symptoms of early reactions are also improved. UPE inhibits the accumulation of inflammatory cells and attenuates the expression of Th2 cytokines in both nasal and bronchoalveolar lavage fluid. Furthermore, UPE treatment inhibits the NF-κB/MAPK signaling pathway in lung homogenates. Additionally, UPE prevents shedding of the nasal mucosal epithelium, protects the integrity of the epithelium, enhances the expression of E-cadherin at the junction of epithelial cells, and inhibits the degradation of ZO-1 and occludin in the airway epithelium. In addition, UPE ameliorates dysfunction of the nasal epithelial barrier by enhancing antioxidant properties and downregulating the expression of the inflammatory factor IL-33. These results suggest that UPE may treat CARAS by modulating epithelial cell dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- School of Medicine, Liaocheng University, Liaocheng 252000, China
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Chun Hua Piao
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeongup Campus of Jeonbuk National University, Jeongup 56212, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
5
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee B, Lee S, Shin HS, Song CH, Chai OH. Undaria pinnatifida ameliorates nasal inflammation by inhibiting eosinophil and mast cell activation and modulating the NF-κB/MAPKs signaling pathway. Immun Inflamm Dis 2024; 12:e1215. [PMID: 38488697 PMCID: PMC10941681 DOI: 10.1002/iid3.1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is the most prevalent form of atopic disease. Undaria pinnatifida has potent antioxidative, antidiabetic, and anti-inflammatory properties. AIMS We investigated the immunomodulatory effect of Undaria pinnatifida extract (UPE) on allergic inflammation in an AR mouse model. MATERIALS & METHODS Mice were sensitized and intranasally challenged with ovalbumin (OVA), and the Th1/Th2 and Th17/Treg-related cytokines and histopathology were exanimated after UPE treatments. Enzyme-linked immunosorbent assay was performed using serum samples and NALF to detect OVA-specific immunoglobulins and inflammatory cytokines. Mitogen-activated protein kinases (MAPKs) were measured by western blotting analysis, and an in vitro study measured mast cell activation induced by compound 48/80. RESULTS After UPE treatment, nasal and lung allergy symptoms, nasal mucosal swelling, and goblet cell hyperplasia were ameliorated. Oral UPE regulated the balance of Th1/Th2 and Th17/Treg cell differentiation in AR mice in a dose-dependent manner. In addition, UPE attenuated the migration of eosinophils and mast cells to the nasal mucosa by suppressing nuclear factor kappa B (NF-κB)/MAPKs. The levels of anti-OVA IgE and IgG1 were also decreased. DISCUSSION UPE inhibited inflammation by regulating the NF-κB/MAPKs signaling pathway and supressing the activation of critical immune cells such as eosinophils and mast cells. CONCLUSION UPE may have therapeutic potential for AR.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Yan Jing Fan
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Basic Medicine, School of MedicineLiaocheng UniversityLiaochengShandongChina
| | - Thi Van Nguyen
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Chun Hua Piao
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Pulmonary and Critical Care MedicineYantai Yuhuangding HospitalYantaiChina
| | - Byung‐Hoo Lee
- Department of Food Science and BiotechnologyGachon UniversitySeongnamSouth Korea
| | - So‐Young Lee
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Hee Soon Shin
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Chang Ho Song
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| | - Ok Hee Chai
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| |
Collapse
|
6
|
Mikkelsen MD, Tran VHN, Meier S, Nguyen TT, Holck J, Cao HTT, Van TTT, Thinh PD, Meyer AS, Morth JP. Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniae. Acta Crystallogr D Struct Biol 2023; 79:1026-1043. [PMID: 37877949 PMCID: PMC10619423 DOI: 10.1107/s2059798323008732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Fucoidanases (EC 3.2.1.-) catalyze the hydrolysis of glycosidic bonds between fucose residues in fucoidans. Fucoidans are a compositionally and structurally diverse class of fucose-containing sulfated polysaccharides that are primarily found in brown seaweeds. Here, the structural characterization of a novel endo-α(1,4)-fucoidanase, Mef1, from the marine bacterium Muricauda eckloniae is presented, showing sequence similarity to members of glycoside hydrolase family 107. Using carbohydrate polyacrylamide gel electrophoresis and nuclear magnetic resonance analyses, it is shown that the fucoidanase Mef1 catalyzes the cleavage of α(1,4)-linkages between fucose residues sulfated on C2 in the structure [-3)-α-L-Fucp2S-(1,4)-α-L-Fucp2S-(1-]n in fucoidan from Fucus evanescens. Kinetic analysis of Mef1 activity by Fourier transform infrared spectroscopy revealed that the specific Mef1 fucoidanase activity (Uf) on F. evanescens fucoidan was 0.1 × 10-3 Uf µM-1. By crystal structure determination of Mef1 at 1.8 Å resolution, a single-domain organization comprising a (β/α)8-barrel domain was determined. The active site was in an extended, positively charged groove that is likely to be designed to accommodate the binding of the negatively charged, sulfated fucoidan substrate. The active site of Mef1 comprises the amino acids His270 and Asp187, providing acid/base and nucleophile groups, respectively, for the hydrolysis of glycosidic bonds in the fucoidan backbone. Electron densities were identified for two possible Ca2+ ions in the enzyme, one of which is partially exposed to the active-site groove, while the other is very tightly coordinated. A water wire was discovered leading from the exterior of the Mef1 enzyme into the active site, passing the tightly coordinated Ca2+ site.
Collapse
Affiliation(s)
- Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Pham Duc Thinh
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang 650000, Vietnam
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Jens Preben Morth
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
7
|
Zueva AO, Silchenko AS, Rasin AB, Malyarenko OS, Kusaykin MI, Kalinovsky AI, Ermakova SP. Production of high- and low-molecular weight fucoidan fragments with defined sulfation patterns and heightened in vitro anticancer activity against TNBC cells using novel endo-fucanases of the GH107 family. Carbohydr Polym 2023; 318:121128. [PMID: 37479440 DOI: 10.1016/j.carbpol.2023.121128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023]
Abstract
Fucoidans are complex fucose-containing sulfated polysaccharides with pronounced anticancer effects. Their structure-anticancer activity relationships are difficult to determine due to fucoidans' complex, often irregularities-including structures. Fucoidan-active enzymes can be used for this propose. We have investigated two new recombinant endo-fucanases FWf3 and FWf4 from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T that belong to the 107 family of glycoside hydrolases (GH). Both enzymes cleaved α-(1→4)-glycosidic bonds but in fucoidan fragments with different sulfation patterns. FWf3 is the first characterized endo-fucanase that cleaves glycosidic bonds between 2O- and 2,4diO-sulfated L-fucose residues. The obtained endo-fucanases were used to produce low- and high-molecular weight fucoidan derivatives with different sulfate group locations. Low- and high-molecular weight fucoidan derivatives rich with 2,4diO-sulfation were shown to inhibit MDA-MB-231 cell colony formation more efficiently than the native fucoidan and the derivatives sulfated otherwise. Such derivatives effectively suppressed the mitochondrial membrane potential of MDA-MB-231 cells and reduced the expression of the glucose transporter 1 (GLUT1). Co-treatment of MDA-MB-231 cells with the fucoidan derivatives and oligomycin (an OXPHOS inhibitor) resulted in a synergistic anticancer effect. The data obtained demonstrate, that fucoidan and its 2,4diO-sulfated derivatives can be an effective adjunct in TNBC therapy targeting cell metabolism.
Collapse
Affiliation(s)
- Anastasiya O Zueva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation.
| | - Anton B Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation.
| |
Collapse
|
8
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
9
|
Pashameah RA, Soltane R, Sayed AM. Discovery of raffinose sulfate as a potential SARS CoV-2 inhibitor via blocking its binding with angiotensin converting enzyme 2. Int J Biol Macromol 2023; 248:125818. [PMID: 37473891 DOI: 10.1016/j.ijbiomac.2023.125818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The present study aimed to characterize the possible binding sites on the SARS CoV-2 RBD-ACE2 complex and to highlight sulfated oligosaccharides as potential anti-SARS CoV-2 via inducing RBD-ACE2 complex destabilization and dissociation. By combining pharmacophore-based and structural-based virtual screening approaches we were able to discover raffinose sulfate (RS) as a potential antiviral sulfated oligosaccharide against two SARS CoV-2 variants (i.e., wild type and Omicron) (IC50 = 4.45 ± 0.28 μM and 4.65 ± 0.32 μM, respectively). Upon MD simulation, RS was able to establish stable binding at the RBD-ACE2 interface inducing a rapid dissociation. Accordingly, and by using bio-layer interferometry (BLI) assays, RS was able to significantly weaken the affinity between RBD (of both variants) and ACE2. Additionally, we found that RS has a poor cellular permeability indicating that its interaction with the RBD-ACE2 complex may be the main mechanism by which it mediates its antiviral activity against SARS CoV-2. Despite its proposed interaction with the RBD-ACE2 complex, RS did not show any inhibitory activity against ACE2 catalytic activity. In light of these findings, the RS scaffold can be further developed into a novel anti-SARS CoV-2 drug with improved activity and tolerability in comparison with other sulfated polysaccharides e.g., heparin and heparan.
Collapse
Affiliation(s)
- Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
| |
Collapse
|
10
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
11
|
Zayed A, Finkelmeier D, Hahn T, Rebers L, Shanmugam A, Burger-Kentischer A, Ulber R. Characterization and Cytotoxic Activity of Microwave-Assisted Extracted Crude Fucoidans from Different Brown Seaweeds. Mar Drugs 2023; 21:48. [PMID: 36662221 PMCID: PMC9863780 DOI: 10.3390/md21010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction pre-treatment steps and MAE optimization, the algal biomasses were extracted in a ratio of 1:25 in 0.1 M HCl containing 2 M CaCl2 for 1.0 min. The results showed that L. saccharina's extract was different from the others, regarding the highest sugar content reached 0.47 mg glucose equivalent/mg extract being confirmed by monosaccharide composition analysis and the lowest fucoidan content and sulfation degree at 0.09 mg/mg extract and 0.13, respectively. Moreover, these findings were confirmed by tentative structural elucidation based on Fourier-transform infrared spectrometry which also showed a different spectrum. However, the MAE enhanced melanoidins formation in products, which was confirmed by the intense band at 1420 cm-1. Interestingly, the results of monomeric composition showed that fucoidan extract by MAE from F. vesiculosus belonged to sulfated galactofucans which are known for their potential bioactivities. Furthermore, the cytotoxic activity of the four fucoidans in concentrations ranging from 4.9 µg/mL to 2500 µg/mL was investigated and correlated with the chemical characterization showing that F. vesiculosus_MAE fucoidan was the most potent and safest. The current research revealed the chemical heterogeneity of fucoidans regarding taxonomical class and used greener extraction method of fucoidans toward the achievement of the UN sustainability goals.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Doris Finkelmeier
- Innovation Field Cell and Tissue Technologies, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Thomas Hahn
- Innovation Field Industrial Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Lisa Rebers
- Innovation Field Cell and Tissue Technologies, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Anusriha Shanmugam
- Biology Department, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany
| | - Anke Burger-Kentischer
- Innovation Field Cell and Tissue Technologies, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from Marine Macroalgae: Biological Actions and Applications in Regenerative Medicine, Drug Delivery Systems and Food Industry. Bioengineering (Basel) 2022; 9:bioengineering9090472. [PMID: 36135017 PMCID: PMC9495336 DOI: 10.3390/bioengineering9090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The marine macroalgae produce a collection of bioactive polysaccharides, of which the sulfated heteropolysaccharide fucoidan produced by brown algae of the class Phaeophyceae has received worldwide attention because of its particular biological actions that confer nutritional and health benefits to humans and animals. The biological actions of fucoidan are determined by their structure and chemical composition, which are largely influenced by the geographical location, harvest season, extraction process, etc. This review discusses the structure, chemical composition and physicochemical properties of fucoidan. The biological action of fucoidan and its applications for human health, tissue engineering, regenerative medicine and drug delivery are also addressed. The industrial scenario and prospects of research depicted would give an insight into developing fucoidan as a commercially viable and sustainable bioactive material in the nutritional and pharmacological sectors.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: or (G.S.A.); (R.R.S.)
| | - Savitha Padmakumari
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Ashok Pandey
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
- Correspondence: or (G.S.A.); (R.R.S.)
| |
Collapse
|
13
|
Ho CH, Chen ML, Huang HL, Lai CJ, Liu CH, Chuu CP, Lin YH. Active Targeting of P-Selectin by Fucoidan Modulates the Molecular Profiling of Metastasis in Docetaxel-Resistant Prostate Cancer. Mar Drugs 2022; 20:md20090542. [PMID: 36135731 PMCID: PMC9500773 DOI: 10.3390/md20090542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/17/2022] Open
Abstract
The standard of care for prostate cancer (PCa) is androgen deprivation therapy (ADT). Although hormone-sensitive PCa is curable by ADT, most conditions progress to castration-resistant prostate cancer (CRPCa) and metastatic CRPCa (mCRPCa). Front-line docetaxel has been administered to patients with CRPCa and mCRPCa. Nevertheless, docetaxel resistance after half a year of therapy has emerged as an urgent clinical concern in patients with CRPCa and mCRPCa. We verified the mechanism by which docetaxel-resistant PCa cells (DU/DX50) exhibited significant cell migration and expression of malignant tumor-related proteins. Our study shows that the biological activity of fucoidan has an important application for docetaxel-resistant PCa cells, inhibiting IL-1R by binding to P-selectin and reducing the expression levels of NF-κB p50 and Cox2 in this metastasis-inhibiting signaling pathway. Furthermore, the combined treatment of fucoidan and docetaxel showed significant anticancer and synergistic effects on the viability of DU/DX50 cells, which is relevant for overcoming the current limitations and improving treatment outcomes. Overall, fucoidan-based combination chemotherapy may exert beneficial effects and facilitate the treatment of docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Chang-Hsun Ho
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua 50008, Taiwan
| | - Mei-Lin Chen
- Department of Pharmacy, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Jen Lai
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Hsin Liu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-28267000 (ext. 7932)
| |
Collapse
|
14
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|