1
|
Brizzi A, Rispoli RM, Autore G, Marzocco S. Anti-Inflammatory Effects of Algae-Derived Biomolecules in Gut Health: A Review. Int J Mol Sci 2025; 26:885. [PMID: 39940655 PMCID: PMC11817955 DOI: 10.3390/ijms26030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Under physiological conditions, the inflammatory response acts as a biological defense against tissue damage or infection, and is rapidly resolved once the infection is cleared. However, chronic inflammatory diseases, including inflammatory bowel disease (IBD), have become increasingly widespread in the last decades, placing a burden on the quality of life of affected people and on healthcare systems worldwide. Available drug therapies are often ineffective due to the chronic nature of these diseases, and prolonged administration of drugs can result in severe side effects for the patient or a lack of efficacy. In addition, there is the growing problem of bacterial resistance to synthetic antibiotics. Together, these factors have led to a strong research focus on the discovery of natural products capable of treating IBD. Recently, there has been a growing interest in compounds derived from marine sources, mainly algae, due to their bioactive secondary metabolites with anti-inflammatory properties well known in the literature. Based on this evidence, this review aimed to evaluate the anti-inflammatory potential of algae-derived biomolecules in IBD. In particular, interesting species from green algae (e.g., Chlorella vulgaris and Ulva pertusa), brown algae (e.g., Macrocystis pyrifera and Ecklonia cava) and red algae (e.g., Porphyra tenera and Grateloupia turuturu) are included in this review due to their proven anti-inflammatory properties. For this purpose, an extensive literature search was conducted using several databases. The results suggest that both macroalgae and microalgae have remarkable potential for IBD therapy due to the anti-inflammatory and antioxidant activities of their bioactive compounds. However, while the preclinical evidence is encouraging, further and long-term clinical studies are needed to better understand their mechanisms of action in order to determine the true efficacy of marine algae in the treatment of IBD.
Collapse
Affiliation(s)
- Alessia Brizzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Rosaria Margherita Rispoli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; (A.B.); (R.M.R.); (G.A.)
| |
Collapse
|
2
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Huang S, Zhang M, Li X, Pei J, Zhou Z, Lei P, Wang M, Zhang P, Yu H, Fan G, Han L, Yu H, Wang Y, Jiang M. Formulation, characterization, and evaluation of curcumin-loaded ginger-derived nanovesicles for anti-colitis activity. J Pharm Anal 2024; 14:101014. [PMID: 39834559 PMCID: PMC11743112 DOI: 10.1016/j.jpha.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 01/05/2025] Open
Abstract
Plant-derived nanovesicles have gained attention given their similarity to mammalian exosomes and advantages such as low cost, sustainability, and tissue targeting. Thus, they hold promise for disease treatment and drug delivery. In this study, we proposed a time-efficient method, PEG 8000 combined with sucrose density gradient centrifugation to prepare ginger-derived nanovesicles (GDNVs). Subsequently, curcumin (CUR) was loaded onto GDNV by ultrasonic incubation. The optimum conditions for ginger-derived nanovesicles loaded with curcumin (CG) were ultrasound time of 3 min, a carrier-to-drug ratio (GDNV:CUR) of 1:1. The study achieved a high loading capacity (94.027% ± 0.094%) and encapsulation efficiency (89.300% ± 0.344%). Finally, the drugs' in vivo distribution and anti-colitis activity were investigated in mice. CG was primarily distributed in the colon after oral administration. Compared to CUR and GDNV, CG was superior in improving disease activity, colon length, liver and spleen coefficients, myeloperoxidase activity, and biochemical factor levels in ulcerative colitis (UC) mice. In addition, CG plays a protective role against UC by modulating serum metabolite levels and gut flora. In summary, our study demonstrated that GDNV can be used for CUR delivery with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Shengjie Huang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoge Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jierong Pei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhirong Zhou
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meng Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Heshui Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guanwei Fan
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
5
|
Repici A, Hasan A, Capra AP, Scuderi SA, Paterniti I, Campolo M, Ardizzone A, Esposito E. Marine Algae and Deriving Biomolecules for the Management of Inflammatory Bowel Diseases: Potential Clinical Therapeutics to Decrease Gut Inflammatory and Oxidative Stress Markers? Mar Drugs 2024; 22:336. [PMID: 39195452 DOI: 10.3390/md22080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The term "inflammatory bowel disease" (IBD) describes a class of relapse-remitting conditions that affect the gastrointestinal (GI) tract. Among these, Crohn's disease (CD) and ulcerative colitis (UC) are two of the most globally prevalent and debilitating conditions. Several articles have brought attention to the significant role that inflammation and oxidative stress cooperatively play in the development of IBD, offering a different viewpoint both on its etiopathogenesis and on strategies for the effective treatment of these conditions. Marine ecosystems may be a significant source of physiologically active substances, supporting the search for new potential clinical therapeutics. Based on this evidence, this review aims to comprehensively evaluate the activity of marine algae and deriving biomolecules in decreasing pathological features of CD and UC. To match this purpose, a deep search of the literature on PubMed (MEDLINE) and Google Scholar was performed to highlight primary biological mechanisms, the modulation of inflammatory and oxidative stress biochemical parameters, and potential clinical benefits deriving from marine species. From our findings, both macroalgae and microalgae have shown potential as therapeutic solutions for IBD due to their bioactive compounds and their anti-inflammatory and antioxidant activities which are capable of modulating markers such as cytokines, the NF-κB pathway, reactive oxidative and nitrosative species (ROS and RNS), trefoil factor 3 (TFF3), lactoferrin, SIRT1, etc. However, while we found promising preclinical evidence, more extensive and long-term clinical studies are necessary to establish the efficacy and safety of marine algae for IBD treatment.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Wu Z, Zhang L, Li H, Li J, Zhang Z, Tan B, Wang J. Ningxiang Pig-Derived Parabacteroides distasonis HNAU0205 Alleviates ETEC-Induced Intestinal Apoptosis, Oxidative Damage, and Inflammation in Piglets. Animals (Basel) 2024; 14:2156. [PMID: 39123683 PMCID: PMC11310999 DOI: 10.3390/ani14152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Weaning is a critical stage in the growth and development of piglets, often inducing stress reactions. This study aims to investigate the effects of Parabacteroides distasonis (PBd) derived from Ningxiang pigs on growth performance, intestinal apoptosis, oxidative damage, and inflammation in ETEC-challenged weaned piglets. A total of 22 Duroc × Landrace × Yorkshire (DLY) piglets, 24 days old with similar body weights, were randomly divided into three groups: Control (n = 7), ETEC (n = 7), and PBd + ETEC (n = 8). The results show that, compared to the Control group, ETEC challenge led to decreased growth performance, reduced villus height in the duodenum and jejunum, increased crypt depth in the duodenum, a decreased villus-height-to-crypt-depth ratio, increased expression of apoptosis-related genes (Caspase-8 and Caspase-9), increased expression of oxidative damage-related genes (Nrf2, GSH-PX, mTOR, and Beclin1), increased expression of inflammation-related genes (Myd88, P65, TNF-α, and IL-6), and reduced the contents of SCFAs in the colonic chyme (acetate, propionate, butyrate, valerate, and total SCFAs). Compared to the ETEC group, the PBd + ETEC group alleviated the reduction in growth performance, mitigated intestinal morphological damage, and reduced the expression of the aforementioned apoptosis, oxidative damage, and inflammation-related genes with the increase in SCFAs. In conclusion, PBd derived from Ningxiang pigs effectively reduces ETEC-induced intestinal damage in weaned piglets, improves intestinal health, and increases the content of SCFAs in the colonic chyme, thereby enhancing growth performance.
Collapse
Affiliation(s)
- Zichen Wu
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Longlin Zhang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hongkun Li
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Junyao Li
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
| | - Zihao Zhang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
| | - Bie Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (L.Z.); (H.L.); (J.L.); (Z.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
7
|
Pan L, Ma M, Wang Y, Dai W, Fu T, Wang L, Shang Q, Yu G. Polyguluronate alleviates ulcerative colitis by targeting the gut commensal Lactobacillus murinus and its anti-inflammatory metabolites. Int J Biol Macromol 2024; 257:128592. [PMID: 38056745 DOI: 10.1016/j.ijbiomac.2023.128592] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Polyguluronate (PG) is a fermentable polysaccharide from edible algae. The present study was designed to investigate the therapeutic effect of PG on ulcerative colitis (UC) and its underlying mechanisms. Our results suggest that oral intake of PG attenuates UC and improves gut microbiota dysbiosis by promoting the growth of Lactobacillus spp. in dextran sulfate sodium-fed mice. Five different species of Lactobacillus were isolated from the feces of PG-treated mice and L. murinus was identified to have the best anti-colitis effect, suggesting a critical role for L. murinus in mediating the therapeutic effect of PG. Furthermore, PG was degraded potentially by the beta-glucuronidase from L. murinus and adding PG to the culture medium of L. murinus remarkably increased its production of anti-inflammatory metabolites, including itaconic acid, cis-11,14-eicosadienoic acid, and 3-amino-3-(2-chlorophenyl)-propionic acid. Additionally, L. salivarius, a human intestine-derived PG-utilizing species that is closely related to L. murinus, was also demonstrated to have potent anti-colitis effects, suggesting that it is a candidate target of PG in the human gut. Altogether, our study illustrates an unprecedented application of PG in the treatment of UC and establishes the basis for understanding its therapeutic effect from the perspective of L. murinus and its metabolites.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Yamin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Wei Dai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Tianyu Fu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Lihao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China; Qingdao Marine Biomedical Research Institute, Qingdao 266071, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China; Qingdao Marine Biomedical Research Institute, Qingdao 266071, China.
| |
Collapse
|
8
|
Xu F, Yu P, Wu H, Liu M, Liu H, Zeng Q, Wu D, Wang X. Aqueous extract of Sargentodoxa cuneata alleviates ulcerative colitis and its associated liver injuries in mice through the modulation of intestinal flora and related metabolites. Front Microbiol 2024; 15:1295822. [PMID: 38328432 PMCID: PMC10847537 DOI: 10.3389/fmicb.2024.1295822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Background Ulcerative colitis (UC) is a refractory disease worldwide. Liver injury can be found clinically with UC, and now, it is found that gut dysbiosis is an important mechanism in the pathogenesis of UC. Sargentodoxa cuneata has been used as a traditional Chinese medicine and is commonly used clinically for the treatment of UC. The main objective of this study was to investigate the intrinsic mechanisms of Sargentodoxa cuneata in the treatment of UC and its associated liver injuries from the perspective of intestinal flora and related metabolites. Methods Ultra-performance liquid chromatography-mass spectrometry was used to identify the components in the aqueous extract of Sargentodoxa cuneata (AESc). Mice with UC induced by dextran sulfate sodium were used to study the effects of AESc on UC and its associated liver injuries. Furthermore, 16S rRNA gene sequencing and analysis were performed on intestinal contents, and correlation analysis of intestinal flora with short-chain fatty acids (SCFAs) and organic acids was performed. Results A total of 114 compounds were identified in AESc. AESc improved disease activity index scores, liver index, and colon length in mice with UC and had a good protective effect on intestine and liver injuries. Moreover, the administration of AESc regulated gut microbiota dysbiosis and the levels of a few SCFAs and organic acids in mice with UC. In addition, the correlation analysis results showed that the Megamonas and Bifidobacterium were the key intestinal flora related to the levels of differential SCFAs and organic acids in mice with UC after AESc intervention. Conclusion AESc has a good protective effect on UC and UC related liver injuries. Modulation of the intestinal flora and its metabolites (SCFAs and a few organic acids) is an important pathway for AESc in the treatment of UC and also provides a rationale for the clinical use of Sargentodoxa cuneata in the treatment of UC.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Piao Yu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mei Liu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hongyun Liu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Zeng
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dengli Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
9
|
Ma M, Quan M, Zhang J, Zhang A, Gao P, Shang Q, Yu G. In Vitro Fermentation of Polysaccharide from Edible Alga Enteromorpha clathrata by the Gut Microbiota of Patients with Ulcerative Colitis. Nutrients 2023; 15:4122. [PMID: 37836407 PMCID: PMC10574352 DOI: 10.3390/nu15194122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Dietary intake of the sulfated polysaccharide from edible alga E. clathrata (ECP) has recently been illustrated to attenuate ulcerative colitis (UC) by targeting gut dysbiosis in mice. However, ECP is not easily absorbed in the gut and, as a potential candidate for next-generation prebiotics development, how it is fermented by human gut microbiota has not been characterized. Here, using in vitro anaerobic fermentation and 16S high-throughput sequencing, we illustrate for the first time the detailed fermentation characteristics of ECP by the gut microbiota of nine UC patients. Our results indicated that, compared to that of glucose, fermentation of ECP by human gut microbiota produced a higher amount of anti-inflammatory acetate and a lower amount of pro-inflammatory lactate. Additionally, ECP fermentation helped to shape a more balanced microbiota composition with increased species richness and diversity. Moreover, ECP significantly stimulated the growth of anti-colitis bacteria in the human gut, including Bacteroides thetaiotaomicron, Bacteroides ovatus, Blautia spp., Bacteroides uniformis, and Parabacteroides spp. Altogether, our study provides the first evidence for the prebiotic effect of ECP on human gut microbiota and sheds new light on the development of ECP as a novel prebiotic candidate for the prevention and potential treatment of UC.
Collapse
Affiliation(s)
- Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Min Quan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
| | - Jiaxue Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
| | - Aijun Zhang
- Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, China; (A.Z.); (P.G.)
| | - Puyue Gao
- Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, China; (A.Z.); (P.G.)
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
- Qingdao Marine Biomedical Research Institute, Qingdao 266071, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
10
|
Isolation of Alginate-Degrading Bacteria from the Human Gut Microbiota and Discovery of Bacteroides xylanisolvens AY11-1 as a Novel Anti-Colitis Probiotic Bacterium. Nutrients 2023; 15:nu15061352. [PMID: 36986080 PMCID: PMC10053142 DOI: 10.3390/nu15061352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alginate has been documented to prevent the development and progression of ulcerative colitis by modulating the gut microbiota. However, the bacterium that may mediate the anti-colitis effect of alginate has not been fully characterized. We hypothesized that alginate-degrading bacteria might play a role here since these bacteria could utilize alginate as a carbon source. To test this hypothesis, we isolated 296 strains of alginate-degrading bacteria from the human gut. Bacteroides xylanisolvens AY11-1 was observed to have the best capability for alginate degradation. The degradation and fermentation of alginate by B. xylanisolvens AY11-1 produced significant amounts of oligosaccharides and short-chain fatty acids. Further studies indicated that B. xylanisolvens AY11-1 could alleviate body weight loss and contraction of colon length, reduce the incidences of bleeding and attenuate mucosal damage in dextran sulfate sodium (DSS)-fed mice. Mechanistically, B. xylanisolvens AY11-1 improved gut dysbiosis and promoted the growth of probiotic bacteria, including Blautia spp. And Prevotellaceae UCG-001, in diseased mice. Additionally, B. xylanisolvens AY11-1 showed no oral toxicity and was well-tolerated in male and female mice. Altogether, we illustrate for the first time an anti-colitis effect of the alginate-degrading bacterium B. xylanisolvens AY11-1. Our study paves the way for the development of B. xylanisolvens AY11-1 as a next-generation probiotic bacterium.
Collapse
|