1
|
Indrio F, Salatto A. Gut Microbiota-Bone Axis. ANNALS OF NUTRITION & METABOLISM 2025:1-10. [PMID: 39848230 DOI: 10.1159/000541999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest. SUMMARY Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis. The major role on gut-bone axis is due to short-chain fatty acids (SCFAs). They have the ability to influence regulatory T-cell (Tregs) development and activate bone metabolism through the action of Wnt10. SCFA production may be a mechanism by which the microbial community, by increasing the serum level of insulin-like growth factor 1 (IGF-1), leads to the growth and regulation of bone homeostasis. A specific SCFA, butyrate, diffuses into the bone marrow where it expands Tregs. The Tregs induce production of the Wnt ligand Wnt10b by CD8+ T cells, leading to activation of Wnt signaling and stimulation of bone formation. At the hormonal level, the effect of the gut microbiota on bone homeostasis is expressed through the biphasic action of serotonin. Some microbiota, such as spore-forming microbes, regulate the level of serotonin in the gut, serum, and feces. Another group of bacterial species (Lactococcus, Mucispirillum, Lactobacillus, and Bifidobacterium) can increase the level of peripheral/vascular leptin, which in turn manages bone homeostasis through the action of brain serotonin.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
2
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. METHODS To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. RESULTS AND DISCUSSION Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Inchingolo F, Inchingolo AM, Piras F, Ferrante L, Mancini A, Palermo A, Inchingolo AD, Dipalma G. The interaction between gut microbiome and bone health. Curr Opin Endocrinol Diabetes Obes 2024; 31:122-130. [PMID: 38587099 PMCID: PMC11062616 DOI: 10.1097/med.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This review critically examines interconnected health domains like gut microbiome, bone health, interleukins, chronic periodontitis, and coronavirus disease 2019 (COVID-19), offering insights into fundamental mechanisms and clinical implications, contributing significantly to healthcare and biomedical research. RECENT FINDINGS This review explores the relationship between gut microbiome and bone health, a growing area of study. It provides insights into skeletal integrity and potential therapeutic avenues. The review also examines interleukins, chronic periodontitis, and COVID-19, highlighting the complexity of viral susceptibility and immune responses. It highlights the importance of understanding genetic predispositions and immune dynamics in the context of disease outcomes. The review emphasizes experimental evidence and therapeutic strategies, aligning with evidence-based medicine and personalized interventions. This approach offers actionable insights for healthcare practitioners and researchers, paving the way for targeted therapeutic approaches and improved patient outcomes. SUMMARY The implications of these findings for clinical practice and research underscore the importance of a multidisciplinary approach to healthcare that considers the complex interactions between genetics, immune responses, oral health, and systemic diseases. By leveraging advances in biomedical research, clinicians can optimize patient care and improve health outcomes across diverse patient populations.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | | | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
4
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
5
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
6
|
Li L, Zhao J, Wang J, Xiong Q, Lin X, Guo X, Peng F, Liang W, Zuo X, Ying C. The arsenic-lowering effect of inulin-type prebiotics in end-stage renal disease: a randomized crossover trial. Food Funct 2024; 15:355-371. [PMID: 38093628 DOI: 10.1039/d3fo01843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Background: Circulatory imbalance of trace elements is frequent in end-stage renal disease (ESRD), leading to a deficiency of essential elements and excess of toxic elements. The present study aimed to investigate whether inulin-type fructans (ITFs) could ameliorate the circulatory imbalance by modulating gut microbiota and regulating the absorption and elimination of trace elements. Methods: Peritoneal dialysis patients were enrolled in a randomized crossover trial, undergoing interventions with ITFs (10 g d-1) and maltodextrin (placebo) over a 9-month period (with a 3-month washout). The primary outcomes included essential elements Mn, Fe, Co, Cu, Zn, Se, Sr, and Mo and potential toxic elements V, Cr, Ni, As, Cd, Ba, Tl, Pb, Th, and U in plasma. Secondary outcomes included the gut microbiome, short chain fatty acids (SCFAs), bile acids (BAs), and daily removal of trace elements through urine, dialysate and feces. Results: Among the 44 participants initially randomized, 29 completed the prebiotic, placebo or both interventions. The daily dietary intake of macronutrients and trace elements remained consistent throughout the study. The administration of 10 g d-1 ITFs significantly reduced plasma arsenic (As) by 1.03 μg L-1 (95%CI: -1.74, -0.33) (FDR-adjusted P = 0.045) down from the baseline of 3.54 μg L-1 (IQRs: 2.61-4.40) and increased the As clearance rate by urine and dialysis (P = 0.033). Positive changes in gut microbiota were also observed, including an increase in the Firmicutes/Bacteroidetes ratio (P = 0.050), a trend towards higher fecal SCFAs (P = 0.082), and elevated excretion of primary BAs (P = 0.035). However, there were no significant changes in plasma concentrations of other trace elements or their daily removal by urine, dialysis and feces. Conclusions: The daily administration of 10 g d-1 ITFs proved to be effective in reducing the circulating retention of As but demonstrated to be ineffective for other trace elements in ESRD. These sentences are ok to include but as "The clinical trial registry number is ChiCTR-INR-17013739 (https://www.chictr.org.cn/showproj.aspx?proj=21228)".
Collapse
Affiliation(s)
- Li Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jing Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jinxue Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qianqian Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaolei Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fan Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wangqun Liang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Zhang J, Mamet T, Guo Y, Li C, Yang J. Yak milk promotes renal calcium reabsorption in mice with osteoporosis via the regulation of TRPV5. J Dairy Sci 2023; 106:7396-7406. [PMID: 37641274 DOI: 10.3168/jds.2022-23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/12/2023] [Indexed: 08/31/2023]
Abstract
The Ca2+-selective epithelial channel TRPV5 plays a significant role in renal calcium reabsorption and improving osteoporosis (OP). In this study, we investigated the mechanisms of yak milk on osteoporosis mice in TRPV5-mediated Ca2+ reabsorption in the kidney. We observed that treatment of OP mice with yak milk reconstructed bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP and ALP in serum. Additionally, yak milk reduced the level of parathyroid hormone (PTH) and elevated 1,25-(OH)2D3 and calcitonin (CT), and inhibited the excretion of Ca/Cr and Pi/Cr in OP mice, which explained by regulating hormone levels and thus enhance the renal Ca2+ reabsorption. Further analysis exhibited that yak milk upregulated the expression of TRPV5 protein and mRNA as well as calbindin-D28k in OP mice kidneys. Overall, these outcomes demonstrate that yak milk enhances renal Ca2+ reabsorption through the TRPV5 pathway synergistically with calbindin-D28k, thus ameliorating OP mice. This provides a new perspective for yak milk as a nutritional supplement to prevent osteoporosis.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Torkun Mamet
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.
| | - Yanping Guo
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Caihong Li
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jingru Yang
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
8
|
Jain M, Stitt G, Son L, Enioutina EY. Probiotics and Their Bioproducts: A Promising Approach for Targeting Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Microorganisms 2023; 11:2393. [PMID: 37894051 PMCID: PMC10608974 DOI: 10.3390/microorganisms11102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a serious global health problem that poses a threat to the successful treatment of various bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Conventional treatment of MRSA and VRE infections is challenging and often requires alternative or combination therapies that may have limited efficacy, higher costs, and/or more adverse effects. Therefore, there is an urgent need to find new strategies to combat antibiotic-resistant bacteria. Probiotics and antimicrobial peptides (AMPs) are two promising approaches that have shown potential benefits in various diseases. Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. AMPs, usually produced with probiotic bacteria, are short amino acid sequences that have broad-spectrum activity against bacteria, fungi, viruses, and parasites. Both probiotics and AMPs can modulate the host immune system, inhibit the growth and adhesion of pathogens, disrupt biofilms, and enhance intestinal barrier function. In this paper, we review the current knowledge on the role of probiotics and AMPs in targeting multi-drug-resistant bacteria, with a focus on MRSA and VRE. In addition, we discuss future directions for the clinical use of probiotics.
Collapse
Affiliation(s)
| | | | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA; (M.J.); (G.S.); (L.S.)
| |
Collapse
|
9
|
Han T, Zhang Y, Qi B, Chen M, Sun K, Qin X, Yang B, Yin H, Xu A, Wei X, Zhu L. Clinical features and shared mechanisms of chronic gastritis and osteoporosis. Sci Rep 2023; 13:4991. [PMID: 36973348 PMCID: PMC10042850 DOI: 10.1038/s41598-023-31541-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic gastritis (CG) and osteoporosis (OP) are common and occult diseases in the elderly and the relationship of these two diseases have been increasingly exposed. We aimed to explore the clinical characteristics and shared mechanisms of CG patients combined with OP. In the cross-sectional study, all participants were selected from BEYOND study. The CG patients were included and classified into two groups, namely OP group and non-OP group. Univariable and multivariable logistic regression methods were used to evaluate the influencing factors. Furthermore, CG and OP-related genes were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the GEO2R tool and the Venny platform. Protein-protein interaction information was obtained by inputting the intersection targets into the STRING database. The PPI network was constructed by Cytoscape v3.6.0 software again, and the key genes were screened out according to the degree value. Gene function enrichment of DEGs was performed by Webgestalt online tool. One hundred and thirty CG patients were finally included in this study. Univariate correlation analysis showed that age, gender, BMI and coffee were the potential influencing factors for the comorbidity (P < 0.05). Multivariate Logistic regression model found that smoking history, serum PTH and serum β-CTX were positively correlated with OP in CG patients, while serum P1NP and eating fruit had an negative relationship with OP in CG patients. In studies of the shared mechanisms, a total of 76 intersection genes were identified between CG and OP, including CD163, CD14, CCR1, CYBB, CXCL10, SIGLEC1, LILRB2, IGSF6, MS4A6A and CCL8 as the core genes. The biological processes closely related to the occurrence and development of CG and OP mainly involved Ferroptosis, Toll-like receptor signaling pathway, Legionellosis and Chemokine signaling pathway. Our study firstly identified the possible associated factors with OP in the patients with CG, and mined the core genes and related pathways that could be used as biomarkers or potential therapeutic targets to reveal the shared mechanisms.
Collapse
Affiliation(s)
- Tao Han
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baoyu Qi
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - Ming Chen
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - Kai Sun
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - Xiaokuan Qin
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - Bowen Yang
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - He Yin
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China
| | - Aili Xu
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China.
| | - Xu Wei
- Department of Academic Development, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China.
| | - Liguo Zhu
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing, 100102, China.
| |
Collapse
|
10
|
Ning Y, Wang X, Lu J, Li Y, Yang Y, Zou D, Zhou D. Study on the life maintenance mechanism of Eisenia fetida under low-density polyethylene stress: Based on path analysis and canonical correlation analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114500. [PMID: 36603488 DOI: 10.1016/j.ecoenv.2023.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The widespread use but low recovery rate of agricultural films has led to microplastic accumulation in farmlands, which poses a serious threat to the health of the soil ecosystem. There is an urgent need for early warning and monitoring of soil microplastics pollution, as well as the performance of bioremediation research. In this study, earthworms were used as test organisms to carry out toxicological tests under low-density polyethylene (LDPE) stress. A canonical correlation analysis model (CCA) was established to analyze the relationship between oxidative stress and microbial community. A path analysis model (PA) was also constructed to examine the detoxification mechanism of earthworms under LDPE stress. The results showed that low concentrations (100 and 500 mg/kg) of LDPE did not cause oxidative damage to earthworms but stimulated their physiological metabolism. Meanwhile, 1000 mg/kg LDPE concentrations caused oxidative damage to earthworms and altered their internal microbial community structure. Furthermore, at 1500 mg/kg LDPE concentrations, the oxidative stress to the earthworms is aggravated, and their physiological responses work in conjunction with the microbial community to cope with the adverse condition. Lastly, treatment with 2000 mg/kg LDPE induced the appearance of LDPE tolerant populations in the microbial community in vivo. Taken together, our results provide a theoretical basis for revealing the physiological response of earthworms when challenged in a polluted environment and provide a model for pollution remediation and ecological security monitoring of soil ecosystems.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiyang Lu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanna Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Galacto-Oligosaccharide Alleviates Alcohol-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation. Metabolites 2022; 12:metabo12090867. [PMID: 36144271 PMCID: PMC9506531 DOI: 10.3390/metabo12090867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a primary cause of mortality and morbidity worldwide. Oxidative stress and inflammation are important pathogenic factors contributing to ALD. We investigated the protective mechanism of galacto-oligosaccharide (GOS) against ALD through their antioxidant and anti-inflammatory activities by performing in vivo and in vitro experiments. Western blot and RT‒PCR results indicated that the expression of cytochrome P450 protein 2E1 (CYP2E1) in liver tissues and L02 cells was reduced in the GOS-treated mice compared with the model group. In addition, GOS prominently reduced the expression of Kelch-like ECH-associated protein 1 (Keap1), increased the expression of the nuclear factor erythroid-2-related factor 2 (Nrf2) and haem oxygenase-1 (HO-1) proteins, and enhanced the antioxidant capacity. In addition, GOS decreased inflammation by reducing inflammatory factor levels and inhibiting the mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) pathway. Based on these results, GOS may be a prospective functional food for the prevention and treatment of ALD.
Collapse
|
12
|
Su L, Li S, Sun B. Curative Effect of Prebiotics/Probiotics-Assisted Ketogenic Diet on Children with Refractory Epilepsy. Emerg Med Int 2022; 2022:1076053. [PMID: 35669168 PMCID: PMC9167138 DOI: 10.1155/2022/1076053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022] Open
Abstract
Objective The aim is to study the curative effect of prebiotics/probiotics-assisted ketogenic diet (KD) on children with refractory epilepsy. Methods A retrospective analysis was performed on the clinical data of 80 children with refractory epilepsy treated in the hospital between December 2018 and December 2020. According to different treatment methods, they were divided into the KD group (36 cases, KD) and combination group (44 cases, prebiotics/probiotics assisted KD). All were followed up for 1 year. The curative effect, electroencephalogram findings, levels of neurotransmitters, quality of life scores, cognitive function (verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ)), and incidence of adverse reactions were compared between the two groups. Results At the last follow-up, the effective rate of the combination group was higher than that of the KD group (95.45% vs 80.56%) (P < 0.05). After 1 year of treatment, video electroencephalogram findings in both groups were improved, and the response rate of the combination group was higher than that of the KD group (97.73% vs 83.33%) (P < 0.05). After 1 year of treatment, levels of VIQ and PIQ in both groups were increased, which were higher in the combination group than the KD group (P < 0.05). After 1 year of treatment, the level of 5-hydroxytryptamine (5-HT) in both groups was increased, which was higher in the combination group than the KD group (P < 0.05). After 1 year of treatment, quality of life scores in both groups were increased, which was higher in the combination group than the KD group (P < 0.05). The incidence of adverse reactions in the combination group was lower than that in the KD group (13.64% vs 36.11%) (P < 0.05). Conclusion The curative effect of prebiotics/probiotics-assisted KD is better on children with refractory epilepsy, which can effectively improve electroencephalogram and quality of life, increase neurotransmitters and cognitive levels, with good safety.
Collapse
Affiliation(s)
- Lingying Su
- Department of Neurology, The Affiliated Huaian No. 1 Hospital of Nanjing Medical University, Huaian 223300, China
| | - Sai Li
- Department of Pharmacy, Huaian Women and Children's Health Care Hospital, Huaian 223003, China
| | - Bo Sun
- Department of Neurology, The Affiliated Huaian No. 1 Hospital of Nanjing Medical University, Huaian 223300, China
| |
Collapse
|
13
|
Yin D, Zhai F, Lu W, Moss AF, Kuang Y, Li F, Zhu Y, Zhang R, Zhang Y, Zhang S. Comparison of Coated and Uncoated Trace Minerals on Growth Performance, Tissue Mineral Deposition, and Intestinal Microbiota in Ducks. Front Microbiol 2022; 13:831945. [PMID: 35495727 PMCID: PMC9039745 DOI: 10.3389/fmicb.2022.831945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Abnormally low or high levels of trace elements in poultry diets may elicit health problems associated with deficiency and toxicity, and impact poultry growth. The optimal supplement pattern of trace mineral also impacts the digestion and absorption in the body. For ducks, the limited knowledge of trace element requirements puzzled duck production. Thus, the objective of this study was to investigate the influence of dietary inclusions of coated and uncoated trace minerals on duck growth performance, tissue mineral deposition, serum antioxidant status, and intestinal microbiota profile. A total of 1,080 14-day-old Cherry Valley male ducks were randomly divided into six dietary treatment groups in a 2 (uncoated or coated trace minerals) × 3 (300, 500, or 1,000 mg/kg supplementation levels) factorial design. Each treatment was replicated 12 times (15 birds per replicate). Coated trace minerals significantly improved average daily gain (p < 0.05), increased Zn, Se, and Fe content of serum, liver, and muscle, increased serum antioxidant enzyme (p < 0.05) and decreased the excreta Fe, Zn, and Cu concentrations. Inclusions of 500 mg/kg of coated trace minerals had a similar effect on serum trace minerals and tissue metal ion deposition as the 1,000 mg/kg inorganic trace minerals. Higher concentrations of Lactobacillus, Sphaerochatea, Butyricimonas, and Enterococcus were found in birds fed with coated trace minerals. In conclusion, diets supplemented with coated trace minerals could reduce the risk of environmental contamination from excreted minerals without affecting performance. Furthermore, coated trace minerals may improve the bioavailability of metal ions and the colonization of probiotic microbiota to protect microbial barriers and maintain gut health.
Collapse
Affiliation(s)
- Dafei Yin
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Feng Zhai
- Yichun Tequ Feed Company, Yichun, China
| | - Wenbiao Lu
- Fujian Syno Biotech Co., Ltd., Fuzhou, China
| | - Amy F Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - Fangfang Li
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yujing Zhu
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruiyang Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yong Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
15
|
Seijo M, Bonanno MS, Vénica CI, Marotte C, Pita Martín de Portela ML, Bergamini CV, Wolf IV, Perotti MC, Zeni SN. A yoghurt containing galactooligosaccharides and having low‐lactose level improves calcium absorption and retention during growth: experimental study. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mariana Seijo
- Metabolic Bone Diseases Laboratory Immunology, Genetic and Metabolism Institute (INIGEM) National Council for Scientific and Technologic Research (CONICET) School of Pharmacy and Biochemistry Buenos Aires University (UBA) Clinical Hospital “José de San Martín” CABA Buenos Aires Argentina
| | - Marina Soledad Bonanno
- Metabolic Bone Diseases Laboratory Immunology, Genetic and Metabolism Institute (INIGEM) National Council for Scientific and Technologic Research (CONICET) School of Pharmacy and Biochemistry Buenos Aires University (UBA) Clinical Hospital “José de San Martín” CABA Buenos Aires Argentina
| | - Claudia Inés Vénica
- Institute of Industrial Lactology (INLAIN) National University of the Litoral (UNL) National Council for Scientific and Technologic Research (CONICET) School of Chemical Engineering (FIQ) Santa Fe Argentina
| | - Clarisa Marotte
- Metabolic Bone Diseases Laboratory Immunology, Genetic and Metabolism Institute (INIGEM) National Council for Scientific and Technologic Research (CONICET) School of Pharmacy and Biochemistry Buenos Aires University (UBA) Clinical Hospital “José de San Martín” CABA Buenos Aires Argentina
| | | | - Carina Viviana Bergamini
- Institute of Industrial Lactology (INLAIN) National University of the Litoral (UNL) National Council for Scientific and Technologic Research (CONICET) School of Chemical Engineering (FIQ) Santa Fe Argentina
| | - Irma Verónica Wolf
- Institute of Industrial Lactology (INLAIN) National University of the Litoral (UNL) National Council for Scientific and Technologic Research (CONICET) School of Chemical Engineering (FIQ) Santa Fe Argentina
| | - María Cristina Perotti
- Institute of Industrial Lactology (INLAIN) National University of the Litoral (UNL) National Council for Scientific and Technologic Research (CONICET) School of Chemical Engineering (FIQ) Santa Fe Argentina
| | - Susana Noemí Zeni
- Metabolic Bone Diseases Laboratory Immunology, Genetic and Metabolism Institute (INIGEM) National Council for Scientific and Technologic Research (CONICET) School of Pharmacy and Biochemistry Buenos Aires University (UBA) Clinical Hospital “José de San Martín” CABA Buenos Aires Argentina
| |
Collapse
|
16
|
Duffles LF, Menino AP, Taira TM, de Oliveira S, Salvador SL, Messora MR, Vinolo MAR, Fukada SY. Probiotic Bifidobacterium animalis subsp. lactis consumption slows down orthodontic tooth movement in mice. Arch Oral Biol 2021; 134:105324. [PMID: 34861464 DOI: 10.1016/j.archoralbio.2021.105324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Probiotics are live microorganisms that, when consumed in appropriate amount, can provide health benefits. Although many studies have shown positive results with the use of probiotics in bone loss control, as in periodontal disease, the effect of probiotics on a mechanical force-induced alveolar bone resorption is still unknown. Therefore, this study aimed to investigate the impact of the specific probiotic Bifidobacterium animalis subsp. lactis on bone remodeling induced by orthodontic tooth movement. METHODS For this study, thirty C57BL6/J male mice were used and divided into two groups: 1- Mice were orally treated with the probiotic; 2- Mice were treated with vehicle. All mice were submitted to the experimental model of orthodontic tooth movement (OTM). Bone parameters and OTM was evaluated by MicroCT. OTM and TRAP positive cells were analyzed by histomorphometric analysis. Osteoclasts markers were evaluated by qPCR and short chain fatty acids were measured in feces. RESULTS Micro-CT analysis showed that probiotic treatment did not modify the alveolar bone parameters. However, supplementation with probiotics restrained the tooth movement, as demonstrated by the reduced distance of OTM. Probiotic-treated mice presented down-regulation of Trap expression and reduced osteoclast numbers compared to the control. Accordingly, probiotics supplemented mice exhibited a higher concentration of short-chain fatty acid in their feces. CONCLUSIONS The supplementation with Bifidobacterium animalis subsp. lactis impaired tooth movement without altering the alveolar bone microarchitecture. The effect on bone remodeling induced by Bifidobacterium animalis subsp. lactis may be associated with the short-chain fatty acids' production.
Collapse
Affiliation(s)
- Letícia Fernanda Duffles
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Alessandra Parreira Menino
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaise Mayumi Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sarah de Oliveira
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, Universidade de Campinas, Campinas, SP, Brazil
| | - Sergio Luiz Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, Universidade de Campinas, Campinas, SP, Brazil
| | - Sandra Yasuyo Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Front Cell Infect Microbiol 2021; 11:634780. [PMID: 34490132 PMCID: PMC8417472 DOI: 10.3389/fcimb.2021.634780] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, defined as the presence of excess fat or lipids in the blood, has been considered as a high-risk factor and key indicator of many metabolic diseases. The gut microbiota has been reported playing a vital role in regulating host lipid metabolism. The pathogenic role of gut microbiota in the development of hyperlipidemia has been revealed through fecal microbiota transplantation experiment to germ-free mice. The effector mechanism of microbiota-related metabolites such as bile acids, lipopolysaccharide, and short-chain fatty acids in the regulation of hyperlipidemia has been partially unveiled. Moreover, studies on gut-microbiota-targeted hyperlipidemia interventions, including the use of prebiotics, probiotics, fecal microbiota transplantation, and natural herbal medicines, also have shown their efficacy in the treatment of hyperlipidemia. In this review, we summarize the relationship between gut microbiota and hyperlipidemia, the impact of gut microbiota and microbiota-related metabolites on the development and progression of hyperlipidemia, and the potential therapeutic management of hyperlipidemia targeted at gut microbiota.
Collapse
Affiliation(s)
- Xiaokang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
18
|
Seely KD, Kotelko CA, Douglas H, Bealer B, Brooks AE. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int J Mol Sci 2021; 22:9452. [PMID: 34502371 PMCID: PMC8431678 DOI: 10.3390/ijms22179452] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
An expanding body of research asserts that the gut microbiota has a role in bone metabolism and the pathogenesis of osteoporosis. This review considers the human gut microbiota composition and its role in osteoclastogenesis and the bone healing process, specifically in the case of osteoporosis. Although the natural physiologic processes of bone healing and the pathogenesis of osteoporosis and bone disease are now relatively well known, recent literature suggests that a healthy microbiome is tied to bone homeostasis. Nevertheless, the mechanism underlying this connection is still somewhat enigmatic. Based on the literature, a relationship between the microbiome, osteoblasts, osteoclasts, and receptor activator of nuclear factor-kappa-Β ligand (RANKL) is contemplated and explored in this review. Studies have proposed various mechanisms of gut microbiome interaction with osteoclastogenesis and bone health, including micro-RNA, insulin-like growth factor 1, and immune system mediation. However, alterations to the gut microbiome secondary to pharmaceutical and surgical interventions cannot be discounted and are discussed in the context of clinical therapeutic consideration. The literature on probiotics and their mechanisms of action is examined in the context of bone healing. The known and hypothesized interactions of common osteoporosis drugs and the human gut microbiome are examined. Since dysbiosis in the gut microbiota can function as a biomarker of bone metabolic activity, it may also be a pharmacological and nutraceutical (i.e., pre- and probiotics) therapeutic target to promote bone homeostasis.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Cody A. Kotelko
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Hannah Douglas
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Brandon Bealer
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Amanda E. Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
19
|
Guo D, Zhao M, Xu W, He H, Li B, Hou T. Dietary interventions for better management of osteoporosis: An overview. Crit Rev Food Sci Nutr 2021; 63:125-144. [PMID: 34251926 DOI: 10.1080/10408398.2021.1944975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a public health concern and a cause of bone loss, increased risk of skeletal fracture, and a heavy economic burden. It is common in postmenopausal women and the elderly and is impacted by dietary factors, lifestyle and some secondary factors. Although many drugs are available for the treatment of osteoporosis, these therapies are accompanied by subsequent side effects. Hence, dietary interventions are highly important to prevent osteoporosis. This review was aimed to provide a comprehensive understanding of the roles of dietary nutrients derived from natural foods and of common dietary patterns in the regulation of osteoporosis. Nutrients from daily diets, such as unsaturated fatty acids, proteins, minerals, peptides, phytoestrogens, and prebiotics, can regulate bone metabolism and reverse bone loss. Meanwhile, these nutrients generally existed in food groups and certain dietary patterns also play critical roles in skeletal health. Appropriate dietary interventions (nutrients and dietary patterns) could be primary and effective strategies to prevent and treat osteoporosis across the lifespan for the consumers and food enterprises.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Dery B, Zaixiang L. Scanning Electron Microscopy (SEM) as an Effective Tool for Determining the Morphology and Mechanism of Action of Functional Ingredients. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bede Dery
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
21
|
Aavani F, Biazar E, Heshmatipour Z, Arabameri N, Kamalvand M, Nazbar A. Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regen Med 2021; 16:581-605. [PMID: 34030458 DOI: 10.2217/rme-2020-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Nasibeh Arabameri
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran
| | - Abolfazl Nazbar
- National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran
| |
Collapse
|
22
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
23
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
24
|
Impaired Hypothalamic Microglial Activation in Offspring of Antibiotic-Treated Pregnant/Lactating Rats Is Attenuated by Prebiotic Oligofructose Co-Administration. Microorganisms 2020; 8:microorganisms8071085. [PMID: 32708167 PMCID: PMC7409116 DOI: 10.3390/microorganisms8071085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Microbial colonization of the gut early in life is crucial for the development of the immune and nervous systems, as well as influencing metabolism and weight gain. While early life exposure to antibiotics can cause microbial dysbiosis, prebiotics are non-digestible substrates that selectively promote the growth of beneficial gut microbiota. Our objective was to examine the effects of dietary prebiotic administration on the consequences of maternal antibiotic intake on offspring body weight, behavior, and neuroimmune responses later in life. Sprague-Dawley rat dams were given low-dose penicillin (LDP), prebiotic fiber (10% oligofructose), or both, during the third week of pregnancy and throughout lactation. Anxiety-like behavior, weight gain, body composition, cecal microbiota composition, and microglial responses to lipopolysaccharide (LPS) were assessed in offspring. Male and female prebiotic offspring had lower body weight compared to antibiotic offspring. Maternal antibiotic exposure resulted in lasting effects on select offspring microbiota including a lower relative abundance of Streptococcus, Lactococcus, and Eubacterium at 10 weeks of age. Maternal antibiotic use impaired microglial response to LPS in the hypothalamus compared to control, and this phenotype was reversed with prebiotic. Prebiotic fiber warrants further investigation as an adjunct to antibiotic use during pregnancy.
Collapse
|
25
|
Nie Q, Chen H, Hu J, Tan H, Nie S, Xie M. Effects of Nondigestible Oligosaccharides on Obesity. Annu Rev Food Sci Technol 2020; 11:205-233. [DOI: 10.1146/annurev-food-032519-051743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is a major public health concern that has almost reached the level of pandemic and is rapidly progressing. The gut microbiota has emerged as a crucial regulator involved in the etiology of obesity, and the manipulation of it by dietary intervention has been widely used for reducing the risk of obesity. Nondigestible oligosaccharides (NDOs) are attracting increasing interests as prebiotics, as the indigestible ingredients can induce compositional or metabolic improvement to the gut microbiota, thereby improving gut health and giving rise to the production of short-chain fatty acids (SCFAs) to elicit metabolic effects on obesity. In this review, the role NDOs play in obesity intervention via modification of the gut microecology, as well as the physicochemical and physiological properties and industrial manufacture of NDOs, is discussed. Our goal is to provide a critical assessment of and stimulate comprehensive research into NDO use in obesity.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| |
Collapse
|
26
|
Zhu D, Yan Q, Liu J, Wu X, Jiang Z. Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J 2019; 33:11655-11667. [PMID: 31415188 DOI: 10.1096/fj.201802802rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes significantly affects the life quality and length of patients with diabetes, and almost half of the 4 million people who die from diabetes are under the age of 60. Because of the increasing number of patients with diabetes and the side effects of antidiabetic drugs, the search for new dietary supplementation from natural resources, especially functional oligosaccharides, has attracted much attention among scientific researchers. Functional oligosaccharides are potential antidiabetic treatments because of their nondigestible, low-calorie, and probiotic features. The antidiabetic activity of multiple functional oligosaccharides such as fructo-oligosaccharides, galacto-oligosaccharides, and xylo-oligosaccharides has been reviewed in this paper. Molecular mechanisms involved in the antidiabetic activity of oligosaccharides have been systematically discussed from multiple perspectives, including the improvement of pancreas function, α-glucosidase inhibition, the relief of insulin and leptin resistance, anti-inflammatory effects, regulation of gut microbiota and hormones, and the intervention of diabetic risk factors. In addition, the antidiabetic effects of functional oligosaccharides through the complex gut-brain-liver axis are summarized. The concepts addressed in this review have important clinical implications, although more works are needed to confirm the antidiabetic mechanisms of functional oligosaccharides, standardize safe dose levels, and clarify their metabolism in the human body.-Zhu, D., Yan, Q., Liu, J., Wu, X., Jiang, Z. Can functional oligosaccharides reduce the risk of diabetes mellitus?
Collapse
Affiliation(s)
- Di Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xia Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|