1
|
Elkattan HH, Elsisi AE, El-Lakkany NM. Gossypol enhances ponatinib's cytotoxicity against human hepatocellular carcinoma cells by involving cell cycle arrest, p-AKT/LC3II/p62, and Bcl2/caspase-3 pathways. Toxicol Rep 2025; 14:101856. [PMID: 39802605 PMCID: PMC11719416 DOI: 10.1016/j.toxrep.2024.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
Despite significant breakthroughs in frontline cancer research and chemotherapy for hepatocellular carcinoma (HCC), many of the suggested drugs have high toxic side effects and resistance, limiting their clinical utility. Exploring potential therapeutic targets or novel combinations with fewer side effects is therefore crucial in combating this dreadful disease. The current study aims to use a novel combination of ponatinib and gossypol against the HepG2 cell line. Cell survival, FGF19/FGFR4, apoptotic and autophagic cell death, and synergistic drug interactions were assessed in response to increasing concentrations of ponatinib and/or gossypol treatment. Research revealed that ponatinib (1.25-40 μM) and gossypol (2.5-80 μM) reduced the viability of HepG2 cells in a way that was dependent on both time and dose. Ponatinib's anti-proliferation effectiveness was improved synergistically by gossypol and was associated with a rise in apoptotic cell death, cell cycle blockage during the G0/G1 phase, and suppression of the FGF19/FGFR4 axis. Furthermore, the ponatinib/gossypol combination lowered Bcl-2 and p-Akt while increasing active caspase-3, Beclin-1, p62, and LC3II. This combination, however, had no harm on normal hepatocytes. Overall, gossypol enhanced ponatinib's anticancer effects in HCC cells. Notably, this new combination appears to be potential adjuvant targeted chemotherapy, a discovery that warrants more clinical investigation, in the management of patients with HCC.
Collapse
Affiliation(s)
- Hadeel H. Elkattan
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Alaa E. Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Naglaa M. El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| |
Collapse
|
2
|
Hemminki K, Zitricky F. Visual presentation of age differences in relative survival of hematological neoplasms in Sweden and the neighboring countries. Ann Hematol 2025; 104:1985-1993. [PMID: 40047911 PMCID: PMC12031788 DOI: 10.1007/s00277-025-06291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025]
Abstract
For many hematological malignancies (HMs) survival among older patients is compromised. We want to test the most up-to-date age-group-specific survival differences in five hematological malignancies, Hodgkin lymphoma (HL), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML) and myeloproliferative diseases (MPD) in Sweden (SE) and compared these to Denmark, Finland and Norway. For analysis we apply a recently published metric for comparing and visualizing age-group-specific relative survival differences using data from the NORDCAN database between 1972 and 2021. Periodic changes in age-related deviation in SE survival showed increasing differences for AML and MM while for the other HMs the differences declined in the course of time. Country-specific differences were observed, for Finnish male CLL and female MPD deviations were larger than those for the other countries, both of which were explained by the deviant survival of the oldest patients. Age-related deviations in 5-year survival increased for AML and MM for which survival improvements have been achieved through intense treatment regimens but these are not offered to old patients because of risk of complications. Paradoxically, improving overall survival in AML and MM has contributed to the widening of the age gaps. For the remaining HMs, age-related deviations declined with time as even old patients benefitted from the survival improvements; most notably female MPD and CLL patients had hardly any age gaps. Age disparities are an issue in hematological malignancies, and an intense search for novel treatments also includes old patients with an example of success as a novel drug venetoclax.
Collapse
Affiliation(s)
- Kari Hemminki
- Biomedical Center, Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, 30605, Czech Republic.
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany.
| | - Frantisek Zitricky
- Biomedical Center, Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, 30605, Czech Republic
| |
Collapse
|
3
|
Sun Y, Wang D, Yuan C, Lang X, Fu S. Lapatinib: A Potential Therapeutic Agent for Colon Cancer Targeting Ferroptosis. Anticancer Agents Med Chem 2025; 25:114-123. [PMID: 39238394 DOI: 10.2174/0118715206327756240830062531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Colon cancer poses a significant threat to the lives of several patients, impacting their quality of life, thus necessitating its urgent treatment. Lapatinib, a new generation of targeted anti-tumor drugs for clinical application, has yet to be studied for its molecular mechanisms in treating colon cancer. OBJECTIVES This study aimed to uncover the underlying molecular mechanisms through which lapatinib exerts its therapeutic effects in colon cancer treatment. METHODS We accessed pertinent data on patients with colon cancer from the Cancer Genome Atlas (TCGA) database and performed bioinformatics analysis to derive valuable insights. The cell counting kit-8 (CCK8) assay was employed to assess whether lapatinib has a potential inhibitory effect on the growth and proliferation of HT- 29 cells. Additionally, we employed western blot and real-time quantitative polymerase chain reaction methods to investigate whether lapatinib regulates the expression of the ferroptosis-associated protein GPX4 in HT-29 cells. Furthermore, we utilized specific assay kits to measure the levels of reactive oxygen species (ROS) and malondialdehyde in HT-29 cells treated with lapatinib, aiming to elucidate the precise pattern of cell damage induced by this compound. RESULTS GPX4 exhibited high expression levels in tissues from patients with colon cancer and was significantly associated with patient prognosis and diagnosis. Lapatinib inhibited the growth and proliferation of the colon cancer cell line HT-29. Additionally, lapatinib suppressed the expression of GPX4 in HT-29 cells, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially restored its expression. Lapatinib induced an increase in intracellular ROS levels and malondialdehyde content in HT-29 cells, with Fer-1 partially restoring these levels. CONCLUSION Our findings demonstrated that lapatinib could effectively suppress the mRNA and protein expression of GPX4 in colon cancer cells, which elevates intracellular levels of ROS and malondialdehyde, ultimately inducing ferroptosis in these cells. This mechanism underscores the potential of lapatinib as a therapeutic strategy for targeting tumors.
Collapse
Affiliation(s)
- Yue Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
| | - Dan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
| | - Chen Yuan
- Basic Medical College, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xiujuan Lang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang, 150081, China
| | - Songbo Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Au Yeung VPW, Obrezanova O, Zhou J, Yang H, Bowen TJ, Ivanov D, Saffadi I, Carter AS, Subramanian V, Dillmann I, Hall A, Corrigan A, Viant MR, Pointon A. Computational approaches identify a transcriptomic fingerprint of drug-induced structural cardiotoxicity. Cell Biol Toxicol 2024; 40:50. [PMID: 38940987 PMCID: PMC11213733 DOI: 10.1007/s10565-024-09880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Structural cardiotoxicity (SCT) presents a high-impact risk that is poorly tolerated in drug discovery unless significant benefit is anticipated. Therefore, we aimed to improve the mechanistic understanding of SCT. First, we combined machine learning methods with a modified calcium transient assay in human-induced pluripotent stem cell-derived cardiomyocytes to identify nine parameters that could predict SCT. Next, we applied transcriptomic profiling to human cardiac microtissues exposed to structural and non-structural cardiotoxins. Fifty-two genes expressed across the three main cell types in the heart (cardiomyocytes, endothelial cells, and fibroblasts) were prioritised in differential expression and network clustering analyses and could be linked to known mechanisms of SCT. This transcriptomic fingerprint may prove useful for generating strategies to mitigate SCT risk in early drug discovery.
Collapse
Affiliation(s)
- Victoria P W Au Yeung
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK.
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jiarui Zhou
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Delyan Ivanov
- High-Throughput Screening, R&D, AstraZeneca, Alderley Park, UK
| | - Izzy Saffadi
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alfie S Carter
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vigneshwari Subramanian
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inken Dillmann
- Disease Molecular Profiling, Discovery Biology, R&D AstraZeneca, Gothenburg, Sweden
| | - Andrew Hall
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Adam Corrigan
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
5
|
Goto H, Umetsu M, Akamatsu D, Sugawara H, Tsuchida K, Yoshida Y, Suzuki S, Kamei T. Comparison of Edoxaban and Warfarin for the Treatment of Cancer-Associated Venous Thromboembolism - A Retrospective Observational Study. Circ J 2024; 88:251-258. [PMID: 33692250 DOI: 10.1253/circj.cj-20-0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Because anticoagulant drugs for ambulatory patients with cancer-associated venous thromboembolism (CAT) are limited to warfarin and direct oral anticoagulants (DOACs) in Japan, it is important to assess the outcomes of both drugs. METHODS AND RESULTS We retrospectively assessed the outcomes of CAT patients who were treated with warfarin or edoxaban between 2011 and 2017. The assessment was limited to the duration of anticoagulant administration. CAT patients who did not receive anticoagulation therapy were also compared with the warfarin and edoxaban groups. We enrolled 111 CAT patients treated with warfarin (n=58, mean age 62.6 years, mean time in therapeutic range [TTR] % 61.1) or edoxaban (n=53, mean age 64.6 years). Although venous thromboembolism (VTE) recurred in 2 warfarin-treated patients, the 2 treatment groups were not significantly different (P=0.18). Bleeding during anticoagulation therapy occurred in 6 warfarin-treated patients (2 with major bleeding) and in 5 edoxaban-treated patients (no major bleeding) (P=1.0). The non-anticoagulation group (n=37) showed a high recurrence rate (P<0.01) compared with the anticoagulant group. CONCLUSIONS This study showed that warfarin and edoxaban are equally effective in preventing VTE recurrence and bleeding. However, warfarin control in CAT patients presented some difficulties. This study also demonstrated the efficacy of anticoagulant drugs, compared with no anticoagulation, for CAT patients to prevent VTE recurrence.
Collapse
Affiliation(s)
- Hitoshi Goto
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Michihisa Umetsu
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Daijirou Akamatsu
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Hirofumi Sugawara
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Ken Tsuchida
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Yoshitaro Yoshida
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Shunya Suzuki
- Division of Vascular Surgery, Department of General Surgery, Tohoku University Hospital
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
6
|
Pandey SK, Verma S, Upreti S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities. Curr Drug Metab 2024; 25:235-247. [PMID: 38984579 DOI: 10.2174/0113892002312369240703102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Sona Verma
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Nainital, Uttrakhand, 263601, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi-110021, India
| | | |
Collapse
|
7
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
8
|
Narayanan J, Tamilanban T, Kumar PS, Guru A, Muthupandian S, Kathiravan MK, Arockiaraj J. Role and mechanistic actions of protein kinase inhibitors as an effective drug target for cancer and COVID. Arch Microbiol 2023; 205:238. [PMID: 37193831 PMCID: PMC10188327 DOI: 10.1007/s00203-023-03559-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.
Collapse
Affiliation(s)
- J Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600077, India.
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - M K Kathiravan
- 209, Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Chen J, Lynn EG, Yousof TR, Sharma H, MacDonald ME, Byun JH, Shayegan B, Austin RC. Scratching the Surface—An Overview of the Roles of Cell Surface GRP78 in Cancer. Biomedicines 2022; 10:biomedicines10051098. [PMID: 35625836 PMCID: PMC9138746 DOI: 10.3390/biomedicines10051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78) is considered an endoplasmic reticulum (ER)-resident molecular chaperone that plays a crucial role in protein folding homeostasis by regulating the unfolded protein response (UPR) and inducing numerous proapoptotic and autophagic pathways within the eukaryotic cell. However, in cancer cells, GRP78 has also been shown to migrate from the ER lumen to the cell surface, playing a role in several cellular pathways that promote tumor growth and cancer cell progression. There is another insidious consequence elicited by cell surface GRP78 (csGRP78) on cancer cells: the accumulation of csGRP78 represents a novel neoantigen leading to the production of anti-GRP78 autoantibodies that can bind csGRP78 and further amplify these cellular pathways to enhance cell growth and mitigate apoptotic cell death. This review examines the current body of literature that delineates the mechanisms by which ER-resident GRP78 localizes to the cell surface and its consequences, as well as potential therapeutics that target csGRP78 and block its interaction with anti-GRP78 autoantibodies, thereby inhibiting further amplification of cancer cell progression.
Collapse
Affiliation(s)
- Jack Chen
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Tamana R. Yousof
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Hitesh Sharma
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Bobby Shayegan
- Department of Surgery, Division of Urology, The Research Institute of St. Joe′s Hamilton, McMaster University, ON L8N 4A6, Canada;
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35175)
| |
Collapse
|
10
|
Shah A, Patel C, Parmar G, Patel A, Jain M. A concise review on tyrosine kinase targeted cancer therapy. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220331104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The tyrosine kinase (TK) family is considered one of the important family members of the kinase family due to its important role in various cellular processes like cell growth, cell differentiation, apoptosis, etc. Mutation, overexpression, and dysfunction of tyrosine kinase receptors lead to the development of malignancy; thus, they are considered as one of the important targets for the development of anti-cancer molecules. The tyrosine kinase family is majorly divided into two classes; receptor and non-receptor tyrosine kinase. Both of the classes have an important role in the development of tumour cells. Currently, there are more than 40 FDA-approved tyrosine kinase inhibitors, which are used in the treatment of various types of cancers. Tyrosine kinase inhibitors mainly block the phosphorylation of tyrosine residue of the corresponding kinase substrate and so activation of downstream signalling pathways can be inhibited. The promising results of tyrosine kinase inhibitors in solid tumours provide a revolution in oncology research. In this article, we had summarized the role of some important members of the tyrosine kinase family in the development and progression of tumour cells and the significance of tyrosine kinase inhibitors in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
- Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Chhagan Patel
- Shree Sarvajaink Pharmacy College, Mehsana, Gujarat India
| | - Ghanshaym Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Anand, Gujarat, India
| | - Manav Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| |
Collapse
|
11
|
Soost D, Bringmann G, Ihmels H. Towards an understanding of the biological activity of naphthylisoquinoline alkaloids: DNA-binding properties of dioncophyllines A, B, and C. NEW J CHEM 2022. [DOI: 10.1039/d2nj04081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dioncophylline A and B bind to duplex DNA in a half-intercalation binding mode and to abasic site-containing DNA by insertion.
Collapse
Affiliation(s)
- Denisa Soost
- Department of Chemistry – Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Heiko Ihmels
- Department of Chemistry – Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
12
|
Elersek T, Novak M, Mlinar M, Virant I, Bahor N, Leben K, Žegura B, Filipič M. Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. TOXICS 2021; 10:toxics10010004. [PMID: 35051046 PMCID: PMC8781212 DOI: 10.3390/toxics10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Igor Virant
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Nika Bahor
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Karin Leben
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Correspondence:
| |
Collapse
|
13
|
Loilome W, Dokduang H, Suksawat M, Padthaisong S. Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opin Investig Drugs 2021; 30:985-1006. [PMID: 34292795 DOI: 10.1080/13543784.2021.1955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelium with the highest incidence found in Thailand. Some patients are considered suitable for adjuvant therapy and surgical resection is currently the curative treatment for CCA patients. Tumor recurrence is still a hurdle after treatment; hence, finding novel therapeutic strategies to combat CCA is necessary for improving outcome for patients. AREAS COVERED We discuss targeted therapies and other novel treatment approaches which include protein kinase inhibitors, natural products, amino acid transporter-based inhibitors, immunotherapy, and drug repurposing. We also examine the challenges of tumor heterogeneity, cancer stem cells (CSCs), the tumor microenvironment, exosomes, multiomics studies, and the potential of precision medicine. EXPERT OPINION Because CCA is difficult to diagnose at the early stage, the traditional treatment approaches are not effective for many patients and most tumors recur. Consequently, researchers are exploring multi-aspect molecular carcinogenesis to uncover molecular targets for further development of novel targeted drugs.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Platella C, Mazzini S, Napolitano E, Mattio LM, Beretta GL, Zaffaroni N, Pinto A, Montesarchio D, Dallavalle S. Plant-Derived Stilbenoids as DNA-Binding Agents: From Monomers to Dimers. Chemistry 2021; 27:8832-8845. [PMID: 33890349 PMCID: PMC8251996 DOI: 10.1002/chem.202101229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Stilbenoids are natural compounds endowed with several biological activities, including cardioprotection and cancer prevention. Among them, (±)-trans-δ-viniferin, deriving from trans-resveratrol dimerization, was investigated in its ability to target DNA duplex and G-quadruplex structures by exploiting NMR spectroscopy, circular dichroism, fluorescence spectroscopy and molecular docking. (±)-trans-δ-Viniferin proved to bind both the minor and major grooves of duplexes, whereas it bound the 3'- and 5'-ends of a G-quadruplex by stacking on the outer quartets, accompanied by rearrangement of flanking residues. Specifically, (±)-trans-δ-viniferin demonstrated higher affinity for the investigated DNA targets than its monomeric counterpart. Additionally, the methoxylated derivatives of (±)-trans-δ-viniferin and trans-resveratrol, i. e. (±)-pterostilbene-trans-dihydrodimer and trans-pterostilbene, respectively, were evaluated, revealing similar binding modes, affinities and stoichiometries with the DNA targets as their parent analogues. All tested compounds were cytotoxic at μM concentration on several cancer cell lines, showing DNA damaging activity consistent with their ability to tightly interact with duplex and G-quadruplex structures.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Ettore Napolitano
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Luce M. Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Giovanni Luca Beretta
- Molecular Pharmacology UnitDepartment of Applied Research and Technological Development Fondazione IRCCS Istituto Nazionale Tumorivia Amadeo 4220133MilanItaly
| | - Nadia Zaffaroni
- Molecular Pharmacology UnitDepartment of Applied Research and Technological Development Fondazione IRCCS Istituto Nazionale Tumorivia Amadeo 4220133MilanItaly
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Daniela Montesarchio
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| |
Collapse
|
15
|
Dehydroabietic Acid Is a Novel Survivin Inhibitor for Gastric Cancer. PLANTS 2021; 10:plants10061047. [PMID: 34067279 PMCID: PMC8224772 DOI: 10.3390/plants10061047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
Gastric cancer is a malignant tumor with a high incidence and mortality rate worldwide. Nevertheless, anticancer drugs that can be used for gastric cancer treatment are limited. Therefore, it is important to develop targeted anticancer drugs for the treatment of gastric cancer. Dehydroabietic acid (DAA) is a diterpene found in tree pine. Previous studies have demonstrated that DAA inhibits gastric cancer cell proliferation by inducing apoptosis. However, we did not know how DAA inhibits the proliferation of gastric cancer cells through apoptosis. In this study, we attempted to identify the genes that induce cell cycle arrest and cell death, as well as those which are altered by DAA treatment. DAA-regulated genes were screened using RNA-Seq and differentially expressed genes (DEGs) analysis in AGS cells. RNA-Seq analysis revealed that the expression of survivin, an apoptosis inhibitor, was significantly reduced by DAA treatment. We also confirmed that DAA decreased survivin expression by RT-PCR and Western blotting analysis. In addition, the ability of DAA to inhibit survivin was compared to that of YM-155, a known survivin inhibitor. DAA was found to have a stronger inhibitory effect in comparison with YM-155. DAA also caused an increase in cleaved caspase-3, an apoptosis-activating protein. In conclusion, DAA is a potential anticancer agent for gastric cancer that inhibits survivin expression.
Collapse
|
16
|
Aslostovar L, Boyd AL, Benoit YD, Di Lu J, Garcia Rodriguez JL, Nakanishi M, Porras DP, Reid JC, Mitchell RR, Leber B, Xenocostas A, Foley R, Bhatia M. Abnormal dopamine receptor signaling allows selective therapeutic targeting of neoplastic progenitors in AML patients. CELL REPORTS MEDICINE 2021; 2:100202. [PMID: 33665638 PMCID: PMC7897800 DOI: 10.1016/j.xcrm.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The aberrant expression of dopamine receptors (DRDs) in acute myeloid leukemia (AML) cells has encouraged the repurposing of DRD antagonists such as thioridazine (TDZ) as anti-leukemic agents. Here, we access patient cells from a Phase I dose escalation trial to resolve the cellular and molecular bases of response to TDZ, and we extend these findings to an additional independent cohort of AML patient samples tested preclinically. We reveal that in DRD2+ AML patients, DRD signaling in leukemic progenitors provides leukemia-exclusive networks of sensitivity that spare healthy hematopoiesis. AML progenitor cell suppression can be increased by the isolation of the positive enantiomer from the racemic TDZ mixture (TDZ+), and this is accompanied by reduced cardiac liability. Our study indicates that the development of DRD-directed therapies provides a targeting strategy for a subset of AML patients and potentially other cancers that acquire DRD expression upon transformation from healthy tissue. Leukemic progenitors are a critical cellular target of DRD2 antagonist TDZ DRD2 protein expression is a reliable biomarker of TDZ response DRD2 antagonism selectively triggers leukemic maturation programs via cyclic AMP An enantiomer of TDZ displays a superior efficacy:risk ratio relative to racemic TDZ
Collapse
Affiliation(s)
- Lili Aslostovar
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Allison L Boyd
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, Ottawa University, Ottawa, ON, Canada
| | - Justin Di Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Mio Nakanishi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Deanna P Porras
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jennifer C Reid
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ryan R Mitchell
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Oliveira CS, Silva MP, Miranda ÍKSPB, Calumby RT, de Araújo-Calumby RF. Impact of clinical pharmacy in oncology and hematology centers: A systematic review. J Oncol Pharm Pract 2020; 27:679-692. [PMID: 33302824 DOI: 10.1177/1078155220976801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oncology and hematology is a complex and specific area that requires monitoring by a multidisciplinary team capable of personalizing the treatment of each patient. Clinical pharmacy services have the potential to contribute significantly to the effective and economical care of cancer patients. OBJECTIVE To evaluate, synthesize and critically present the available evidence on the impact of the Clinical Pharmacy in the treatment of patients with hematological cancer. METHOD A review was carried out on the bases PubMed/MEDLINE, LILACS and Google Scholar. The included studies were: studies that evaluated the effects of pharmaceutical interventions in clinical in oncology and hematology services and having as a population patient with hematological cancer. RESULTS 17 studies were selected among 745 identified. 4.771 patients were included, with an average follow-up time of 15.3 months. Patients affected by some type of hematological cancer, undergoing chemotherapy treatment, showed better adherence and continuity when accompanied by a clinical pharmacist, added to this professional in carrying out interventions, provides control of symptoms such as cancer pain, nausea and constipation and, thus, contributes to decrease the length of hospital stay. CONCLUSION The implementation of a Clinical Pharmacy service in oncology and hematology centers contributes significantly to the effectiveness of pharmacotherapeutic treatment, treatment costs reduction, safety increase in the use of medications and the patient's quality of life.
Collapse
Affiliation(s)
- Cynara S Oliveira
- Department of Health, Pharmacy College, Unidade de Ensino Superior de Feira de Santana - UNEF, Feira de Santana, Brazil
| | - Mauriele P Silva
- Department of Health, Pharmacy College, Unidade de Ensino Superior de Feira de Santana - UNEF, Feira de Santana, Brazil
| | - Íngara K S P B Miranda
- Department of Health, Pharmacy College, Unidade de Ensino Superior de Feira de Santana - UNEF, Feira de Santana, Brazil
| | - Rodrigo T Calumby
- Department of Exact Sciences, University of Feira de Santana, Feira de Santana, Brazil
| | - Renata F de Araújo-Calumby
- Department of Health, Pharmacy College, Unidade de Ensino Superior de Feira de Santana - UNEF, Feira de Santana, Brazil.,Federal University of Bahia - UFBA, Salvador, Brazil
| |
Collapse
|
18
|
Alkamaly OM, Altwaijry N, Sabour R, Harras MF. Dual EGFR/VEGFR2 inhibitors and apoptosis inducers: Synthesis and antitumor activity of novel pyrazoline derivatives. Arch Pharm (Weinheim) 2020; 354:e2000351. [PMID: 33252142 DOI: 10.1002/ardp.202000351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/01/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022]
Abstract
Novel derivatives of the pyrazoline scaffold were synthesized and investigated for their cytotoxicity against prostate (PC-3), hepatocellular (HepG2), and breast (MDA-MB-231) carcinoma cells. The most active compounds, 4a, 4b, 5b, and 7c, revealed significant and broad-spectrum anticancer activities with IC50 values of 1.30-7.18 μM in comparison with doxorubicin (IC50 = 5.12-7.33 μM). Additionally, they exhibited lower cytotoxicity against normal WI-38 cells, indicating their high safety profiles. Aiming to enlighten the inhibitory potential on receptor tyrosine kinases (RTKs), compounds 4a, 4b, 5b, and 7c were assessed for their activities against four different RTKs (EGFR, FGFR2, HER2, and VEGFR2) and their apoptotic potencies on PC-3 cells. The results revealed that compounds 5b and 7c are potent dual EGFR and VEGFR2 inhibitors (IC50 = 0.21 and 0.23 μM, respectively, against EGFR; 0.22 and 0.21 μM, respectively, against VEGFR2), whereas they displayed moderate inhibitory activities against HER2 and FGFR2. Besides, compounds 4a, 4b, 5b, and 7c prompted apoptosis via the upregulation of Bax, p53, and caspase-3, together with the downregulation of the levels of Bcl-2. Also, it was found that compounds 5b and 7c are more potent as apoptosis inducers than the other tested derivatives. Furthermore, molecular docking analyses of compounds 4a, 4b, 5b, and 7c in the EGFR and VEGFR ATP binding sites were performed, to confirm the in vitro assays.
Collapse
Affiliation(s)
- Omkulthom M Alkamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Wang X, Feng Y, Zhang P, Chen H, Bai J, Wang F, He A. miR-582-5p serves as an antioncogenic biomarker in intermediate risk AML with normal cytogenetics and could inhibit proliferation and induce apoptosis of leukemia cells. Cell Biol Int 2020; 44:2021-2030. [PMID: 32543749 DOI: 10.1002/cbin.11408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022]
Abstract
Numerous studies confirmed that aberrant microRNA (miRNA) expression contributes to cancer development and progression. We carried out this study to explore the expression profile of miRNAs in intermediate risk acute myeloid leukemia (AML) and locate certain miRNAs as biomarkers. We profiled differentially expressed miRNAs by performing miRNA sequencing analysis in the patients' samples. Bioinformatic analysis showed the most significantly expressed genes mostly involved in cellular component organization, cell differentiation, and cell development. Reverse-transcription polymerase chain reaction validated the expression of miR-582-5p in different groups of AML samples. It was confirmed that miR-582-5p was downregulated in newly diagnosed AML and relapse/refractory AML compared with CR AML or controls. Among intermediate risk AML patients with normal cytogenetics, a lower level of miR-582-5p is correlated with an unfavorable outcome, and a shorter overall survival. Gain- and loss-of-function experiments revealed that miR-582-5p could inhibit proliferation, suppress migration, and invasion ability and induce apoptosis of leukemia cells. Furthermore, overexpression of miR-582-5p can increase sensitivity of cells to Ara-C. In conclusion, miR-582-5p can serve as an antioncogenic biomarker in intermediate risk AML with normal cytogenetics for risk classification and outcome prediction. These results showed a novel role for miR-582-5p in predicting the prognosis and promoting the tumor growth of AML.
Collapse
Affiliation(s)
- Xiaman Wang
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuandong Feng
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peihua Zhang
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Chen
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ju Bai
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fangxia Wang
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aili He
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Hematology Department, National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers (Basel) 2020; 12:cancers12030731. [PMID: 32244867 PMCID: PMC7140093 DOI: 10.3390/cancers12030731] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs. Finally, we discuss the interest of therapeutic combination of different RTKIs or with other molecules for personalized treatments, and the challenge for effective combination with less toxic and off-target effects.
Collapse
Affiliation(s)
- Charles Pottier
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
- Correspondence:
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie Gilon
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| | - Guy Jérusalem
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium;
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, 69120 Heidelberg, Germany; (M.F.); (R.L.)
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer and GIGA-I3, GIGA-Research, University Hospital of Liège, 4000 Liège, Belgium; (M.G.); (N.E.S.)
| |
Collapse
|