1
|
Liang H, Wu S, Zhang Z, Khan MZ, Zhan Y, Zhu M, Wang S, Liu W, Wang C, Cao G, Han Y. Establishment of a mouse model of ovarian oxidative stress induced by hydrogen peroxide. Front Vet Sci 2024; 11:1484388. [PMID: 39568483 PMCID: PMC11576385 DOI: 10.3389/fvets.2024.1484388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Oxidative stress, resulting from environmental changes, significantly affects female fertility. Developing a mouse model to study oxidative stress lays the groundwork for research into human reproductive health and livestock fertility. Materials and methods In this study, we established and evaluated an oxidative stress model by administering hydrogen peroxide (H2O2) to mice. ICR mice of similar age (7-8 weeks old) and average body weight (31.58 ± 1.12 g) were randomly assigned to four groups (A, B, C, and D). Group A served as the control and was injected with a saline solution, while groups B, C, and D received saline solutions containing 0.75%, 1.50%, and 3.0% H2O2, respectively, over one week. We measured the body weights of all mice before and after the experimental period. Results and discussion Our findings showed that the average body weight of mice in groups A and B increased, while groups C and D experienced weight loss. Group C showed a significantly lower average weight gain compared to groups A and B, and group D exhibited an even more pronounced reduction in weight gain. Although group D had a high mortality rate, there was no significant difference in mortality rates among groups B, C, and D. Serum malondialdehyde (MDA) content increased with higher concentrations of H2O2, with a significant difference noted between groups C and A. Catalase (CAT) activity in group B was significantly higher than in group A, while superoxide dismutase (SOD) activity in group C was notably elevated compared to groups A and B. Conversely, glutathione peroxidase (GSH-Px) activity in group C was significantly lower than in both group A and group B. Hematoxylin and eosin (HE) staining revealed changes in ovarian morphology and follicle dynamics. The percentage of atretic follicles in group C was significantly higher than in the control group, and group D had a significantly lower total number of healthy follicles compared to the untreated group. Increased H2O2 content resulted in a reduction of ovary size and an irregular appearance in group D. Conclusion Based on our findings, treatment with 1.50% H2O2 effectively established an oxidative stress model in mice within 1 week. This model serves as a valuable reference for future clinical studies on oxidative stress and reproductive disorders in female animals and humans.
Collapse
Affiliation(s)
- Huili Liang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Shuaishuai Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Zhenwei Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Shoushan Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Guiling Cao
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Ying Han
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Ignacio-Mejía I, Contreras-García IJ, Pichardo-Macías LA, García-Cruz ME, Ramírez Mendiola BA, Bandala C, Medina-Campos ON, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG. Effect of Levetiracetam on Oxidant-Antioxidant Activity during Long-Term Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2024; 25:9313. [PMID: 39273262 PMCID: PMC11395009 DOI: 10.3390/ijms25179313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | | - Cindy Bandala
- Laboratorio de Neurociencia Traslacional Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11410, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | |
Collapse
|
3
|
Savuca A, Curpan AS, Hritcu LD, Buzenchi Proca TM, Balmus IM, Lungu PF, Jijie R, Nicoara MN, Ciobica AS, Solcan G, Solcan C. Do Microplastics Have Neurological Implications in Relation to Schizophrenia Zebrafish Models? A Brain Immunohistochemistry, Neurotoxicity Assessment, and Oxidative Stress Analysis. Int J Mol Sci 2024; 25:8331. [PMID: 39125900 PMCID: PMC11312823 DOI: 10.3390/ijms25158331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania;
| | - Teodora Maria Buzenchi Proca
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Petru Fabian Lungu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| |
Collapse
|
4
|
Savuca A, Chelaru IA, Balmus IM, Curpan AS, Nicoara MN, Ciobica AS. Toxicological Response of Zebrafish Exposed to Cocktails of Polymeric Materials and Valproic Acid. SUSTAINABILITY 2024; 16:2057. [DOI: 10.3390/su16052057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Microplastic pollution represents an emerging problem of great interest in the public domain in the last decade; in addition, it overlaps with another delicate problem—pollution with pharmaceutical products that can have negative effects on the environment and people, even in small amounts. The main purpose of this study was to assess the biochemical and behavioral effects of exposure of adult zebrafish (Danio rerio) to polyethylene (PE), polypropylene (PP) and valproic acid (VPA), respectively to their mixtures—possible situations in natural aquatic environments. In terms of behavioral responses, sociability appears to be more impaired in the PP group after 5 days of exposure. The mechanisms affected are more those of swimming performance than of sociability. Even more, VPA increases presence in the arm with conspecifics but decreases mobility and locomotion, indicating a possible anxiety mechanism. The mixtures decrease the aggressiveness, especially in the case of the PE+VPA group, where it reaches a super low level compared to the control, which could endanger the species in nature. Regarding the anxiogenic effect, PP and PE act differently: if PE has an anxiogenic effect, on the opposite side is the PP group, which shows a bolder and more agitated behavior. All four variants showed behavioral changes indicative of toxicity from the first dose.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Ionut-Alexandru Chelaru
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Ioana-Miruna Balmus
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, 26, 700057 Iasi, Romania
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| |
Collapse
|
5
|
Uberti F, Trotta F, Cavalli R, Galla R, Caldera F, Ferrari S, Mulè S, Brovero A, Molinari C, Pagliaro P, Penna C. Enhancing Vitamin D3 Efficacy: Insights from Complexation with Cyclodextrin Nanosponges and Its Impact on Gut-Brain Axes in Physiology and IBS Syndrome. Int J Mol Sci 2024; 25:2189. [PMID: 38396866 PMCID: PMC10889673 DOI: 10.3390/ijms25042189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (βNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Francesco Trotta
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Fabrizio Caldera
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| | - Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Arianna Brovero
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
| | - Claudio Molinari
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Pasquale Pagliaro
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Claudia Penna
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
6
|
Robea MA, Ilie OD, Nicoara MN, Solcan G, Romila LE, Ureche D, Ciobica A. Vitamin B 12 Ameliorates Pesticide-Induced Sociability Impairment in Zebrafish ( Danio rerio): A Prospective Controlled Intervention Study. Animals (Basel) 2024; 14:405. [PMID: 38338046 PMCID: PMC10854844 DOI: 10.3390/ani14030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Constant exposure to a variety of environmental factors has become increasingly problematic. A variety of illnesses are initiated or aided by the presence of certain perturbing factors. In the case of autism spectrum disorder, the environmental component plays an important part in determining the overall picture. Moreover, the lack of therapies to relieve existing symptoms complicates the fight against this condition. As a result, animal models have been used to make biomedical research easier and more suited for disease investigations. The current study used zebrafish as an animal model to mimic a real-life scenario: acute exposure to an increased dose of pesticides, followed by prospective intervention-based therapy with vitamin B12 (vit. B12). It is known that vit. B12 is involved in brain function nerve tissue, and red blood cell formation. Aside from this, the role of vit. B12 in the redox processes is recognized for its help against free radicals. To investigate the effect of vit. B12, fish were divided into four different groups and exposed to a pesticide mixture (600 μg L-1 fipronil + 600 μg L-1 pyriproxyfen) and 0.24 μg L-1 vit. B12 for 14 days. The impact of the compounds was assessed daily with EthoVision XT 11.5 software for behavioral observations, especially for sociability, quantified by the social interaction test. In addition, at the end of the study, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were measured. The results showed significant improvements in locomotor activity parameters and a positive influence of the vitamin on sociability. Regarding the state of oxidative stress, high activity was found for SOD and GPx in the case of vit. B12, while fish exposed to the mixture of pesticides and vit. B12 had a lower level of MDA. In conclusion, the study provides new data about the effect of vit. B12 in zebrafish, highlighting the potential use of vitamin supplementation to maintain and support the function of the organism.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
| | - Ovidiu Dumitru Ilie
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania;
| | - Mircea Nicusor Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Gheorghe Solcan
- Internal Medicine Clinic, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, 700489 Iasi, Romania;
| | | | - Dorel Ureche
- Department of Biology, Ecology and Environmental Protection, Faculty of Sciences, University “Vasile Alecsandri“ of Bacau, Calea Marasesti Street, No. 157, 600115 Bacau, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I, 20A, 700505 Iasi, Romania;
- Academy of Romanian Scientists, 54, Independence Street, Sector 5, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
| |
Collapse
|
7
|
Peng R, Gao F, Hu Y, Li K, Liu B, Zheng W, Yang X, Hu W, Zheng L, Fan Q, Fang M. Effects of transport stress on the oxidative index, apoptosis and autophagy in the small intestine of caprine. BMC Vet Res 2023; 19:117. [PMID: 37559056 PMCID: PMC10413633 DOI: 10.1186/s12917-023-03670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Introducing new goat breeds or transferring adult goats from farms to slaughterhouses requires transportation, which can engender adverse effects, such as oxidative stress, pathological cell apoptosis and autophagy. Current evidence suggests that malondialdehyde (MDA) is a metabolite of lipid peroxidation during oxidative stress, while superoxide dismutase (SOD) and catalase (CAT) can alleviate injury caused by free radicals and reactive oxygen species (ROS). Meanwhile, Bcl-2, Bax, LC3B, PINK1 and Parkin are important proteins that participate in pathological cell apoptosis and autophagy. This study aimed to investigate the effects of transportation stress on oxidative stress indexes and expressions of Bcl-2, Bax, LC3B, PINK1 and Parkin in the small intestine of goats. Twelve healthy adult male goats from western Jiangxi province were randomly divided into control, 2 h transportation stress, and 6 h transportation stress groups (n = 4 per group). RESULTS Our results showed that MDA in the small intestine significantly increased after transportation, while SOD and CAT activities decreased, with a significantly increased apoptosis rate of the small intestine cells. The jejunum and duodenum exhibited the highest apoptosis rate in the 2 h and 6 h transportation groups, respectively. The expression of apoptosis-related genes Bcl-2 and Bax and their corresponding proteins exhibited varying degrees of down-regulation or up-regulation, while Bcl-2 and Bax genes in the small intestine were upregulated in the 6 h transportation group. In addition, autophagosomes and autophagolysosomes were found in various parts of the small intestine by transmission electron microscopy, and autophagy-related genes LC3B, PINK1 and Parkin were significantly down-regulated in the 2 h group and up-regulated in the 6 h group. CONCLUSIONS Our results indicate that the contents of MDA, SOD and CAT in the small intestine, the expression of pathologic apoptosis-related genes Bcl-2 and Bax, and autophagy-related genes LC3B, PINK1 and Parkin correlated with stress duration caused by transportation. Moreover, this study provides a foothold for further studies on the mechanism of transportation stress in goats and improving animal welfare.
Collapse
Affiliation(s)
- Ruini Peng
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Fan Gao
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Yunhai Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Kangli Li
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China.
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co. LTD, Yichun, 336000, Jiangxi, China.
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, Jiangxi, China.
| | - Wenya Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China.
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, Jiangxi, China.
| | - Xue Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, Jiangxi, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co. LTD, Yichun, 336000, Jiangxi, China
| | - Lucheng Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co. LTD, Yichun, 336000, Jiangxi, China
| | - Qingcan Fan
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co. LTD, Yichun, 336000, Jiangxi, China
| | - Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co. LTD, Yichun, 336000, Jiangxi, China
| |
Collapse
|
8
|
Alkhawaldeh A, Al Omari O, Al Aldawi S, Al Hashmi I, Ann Ballad C, Ibrahim A, Al Sabei S, Alsaraireh A, Al Qadire M, ALBashtawy M. Stress Factors, Stress Levels, and Coping Mechanisms among University Students. ScientificWorldJournal 2023; 2023:2026971. [PMID: 37426577 PMCID: PMC10325878 DOI: 10.1155/2023/2026971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Aims To explore university students' levels of stress, stressors, and their coping style. Methods A cross-sectional correlational design with a convenience sample (n = 676) of university students who completed the Student-Life Stress Inventory (SSI) and Coping Strategies Indicator (CSI) was used. Findings. Overall, two-thirds of the participant reported moderate levels of stress. Students with chronic illness, living alone, low CGPA, and having exams today experienced a statistically higher mean level of stress. Students who are living alone used the "avoidance" method more significantly and the "social support" method significantly less compared with students who are living with their families and friends. Conclusion This study concurs with others that university students are prone to distress. To our knowledge, this is the first study in the region to explore the students' coping skills. Some of the employed coping and associated factors could be used to lay the groundwork for evidence-based prevention and mitigation.
Collapse
Affiliation(s)
- Abdullah Alkhawaldeh
- Department of Community and Mental Health, Princess Salma Faculty of Nursing, Al al-Bayt University, Mafraq, Jordan
| | - Omar Al Omari
- College of Nursing, Sultan Qaboos University, Muscat, Oman
| | | | - Iman Al Hashmi
- College of Nursing, Sultan Qaboos University, Muscat, Oman
| | | | - Amal Ibrahim
- Health Work Committees Association, Ramallah, State of Palestine
| | | | - Arwa Alsaraireh
- College of Nursing, Sultan Qaboos University, Muscat, Oman
- Faculty of Nursing, Mutah University, Al-Karak, Jordan
| | - Mohammad Al Qadire
- College of Nursing, Sultan Qaboos University, Muscat, Oman
- Princess Salma Faculty of Nursing, Al al-Bayt University, Mafraq, Jordan
| | - Mohammed ALBashtawy
- Department of Community and Mental Health, Princess Salma Faculty of Nursing, Al al-Bayt University, Mafraq, Jordan
| |
Collapse
|
9
|
Feng J, Wang Y, Li W, Zhao Y, Liu Y, Yao X, Liu S, Yu P, Li R. High levels of oxidized fatty acids in HDL impair the antioxidant function of HDL in patients with diabetes. Front Endocrinol (Lausanne) 2022; 13:993193. [PMID: 36339401 PMCID: PMC9630736 DOI: 10.3389/fendo.2022.993193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
AIMS Previous studies demonstrate that the antioxidant functions of high-density lipoprotein (HDL) are impaired in diabetic patients. The composition of HDL plays an important role in maintaining the normal functionality of HDL. In this study, we compared the levels of oxidized fatty acids in HDL from diabetic subjects and non-diabetic healthy controls, aiming to investigate the role of oxidized fatty acids in the antioxidant property of HDL. METHODS HDL was isolated from healthy subjects (n=6) and patients with diabetes (n=6, hemoglobin A1c ≥ 9%, fasting glucose ≥ 7 mmol/L) using a dextran sulfate precipitation method. Cholesterol efflux capacity mediated by HDL was measured on THP-1 derived macrophages. The antioxidant capacity of HDL was evaluated with dichlorofluorescein-based cellular assay in human aortic endothelial cells. Oxidized fatty acids in HDL were determined by liquid chromatography-tandem mass spectrometry. The correlations between the levels of oxidized fatty acids in HDL and the endothelial oxidant index in cells treated with HDLs were analyzed through Pearson's correlation analyses, and the effects of oxidized fatty acids on the antioxidant function of HDL were verified in vitro. RESULTS The cholesterol efflux capacity of HDL and the circulating HDL-cholesterol were similar in diabetic patients and healthy controls, whereas the antioxidant capacity of HDL was significantly decreased in diabetic patients. There were higher levels of oxidized fatty acids in HDL isolated from diabetic patients, which were strongly positively correlated with the oxidant index of cells treated with HDLs. The addition of a mixture of oxidized fatty acids significantly disturbed the antioxidant activity of HDL from healthy controls, while the apolipoprotein A-I mimetic peptide D-4F could restore the antioxidant function of HDL from diabetic patients. CONCLUSION HDL from diabetic patients displayed substantially impaired antioxidant activity compared to HDL from healthy subjects, which is highly correlated with the increased oxidized fatty acids levels in HDL.
Collapse
Affiliation(s)
- Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen Guangdong, China
| | - Yunfeng Wang
- Department of Endocrinology, Shenzhen Sami Medical Center (The Fourth People’s Hospital of Shenzhen), Shenzhen Guangdong, China
| | - Weixi Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen Guangdong, China
| | - Yue Zhao
- Clinical Laboratory, Shenzhen Sami Medical Center (The Fourth People’s Hospital of Shenzhen), Shenzhen Guangdong, China
| | - Yi Liu
- Clinical Laboratory, Shenzhen Sami Medical Center (The Fourth People’s Hospital of Shenzhen), Shenzhen Guangdong, China
| | - Xingang Yao
- National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong, China
| | - Shuwen Liu
- National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong, China
| | - Ping Yu
- Department of Endocrinology, Shenzhen Sami Medical Center (The Fourth People’s Hospital of Shenzhen), Shenzhen Guangdong, China
- *Correspondence: Ping Yu, ; Rongsong Li,
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen Guangdong, China
- *Correspondence: Ping Yu, ; Rongsong Li,
| |
Collapse
|
10
|
Ilie OD, Paduraru E, Robea MA, Balmus IM, Jijie R, Nicoara M, Ciobica A, Nita IB, Dobrin R, Doroftei B. The Possible Role of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 on Locomotor Activity and Oxidative Stress in a Rotenone-Induced Zebrafish Model of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9629102. [PMID: 34691361 PMCID: PMC8531778 DOI: 10.1155/2021/9629102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND As every organ within the body, the brain is also extremely susceptible to a plethora of noxious agents that change its chemistry. One component frequently found in current products against harmful species to crops is rotenone whose effect under prolonged exposure has been demonstrated to cause neurodegenerative disorders such as Parkinson's disease. The latest reports have indeed revealed that rotenone promotes Parkinson's in humans, but studies aiming to show congruent effects in zebrafish (Danio rerio) are lacking. Material and Methods. In this context, the aim of the present study was to demonstrate how chronic administration of rotenone for 3 weeks impairs the locomotor activity and sociability and induces oxidative stress in zebrafish. RESULTS There were no statistically significant differences following the analysis of their social interaction and locomotor tests (p > 0.05). However, several exceptions have been noted in the control, rotenone, and probiotics groups when we compared their locomotor activity during the pretreatment and treatment interval (p < 0.05). We further assessed the role of rotenone in disturbing the detoxifying system as represented by three enzymes known as superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Despite the fact that there were no statistically significant changes within SOD and GPx levels between the control group and rotenone, probiotics, and rotenone + probiotics (p > 0.05), relevant changes have been observed between the analyzed groups (p < 0.05 and p < 0.005, respectively). On the other hand, significant differences (p < 0.05) have been observed for MDA when we analyzed the data between the control group and the other three groups. CONCLUSIONS Our results suggest that rotenone can be successfully used to trigger Parkinson's disease-related symptomatology in zebrafish.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Emanuela Paduraru
- Faculty of Geography and Geology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Madalina-Andreea Robea
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, No 11, 700506 Iasi, Romania
| | - Roxana Jijie
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, No 11, 700506 Iasi, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Ilinca-Bianca Nita
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania
| | - Romeo Dobrin
- Department of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No 16, 700115 Iasi, Romania
| |
Collapse
|
11
|
Ilie OD, Paduraru E, Robea MA, Balmus IM, Jijie R, Nicoara M, Ciobica A, Nita IB, Dobrin R, Doroftei B. The Possible Role of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 on Locomotor Activity and Oxidative Stress in a Rotenone-Induced Zebrafish Model of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [PMID: 34691361 DOI: 10.1155/2021/9629102.ecollection2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND As every organ within the body, the brain is also extremely susceptible to a plethora of noxious agents that change its chemistry. One component frequently found in current products against harmful species to crops is rotenone whose effect under prolonged exposure has been demonstrated to cause neurodegenerative disorders such as Parkinson's disease. The latest reports have indeed revealed that rotenone promotes Parkinson's in humans, but studies aiming to show congruent effects in zebrafish (Danio rerio) are lacking. Material and Methods. In this context, the aim of the present study was to demonstrate how chronic administration of rotenone for 3 weeks impairs the locomotor activity and sociability and induces oxidative stress in zebrafish. RESULTS There were no statistically significant differences following the analysis of their social interaction and locomotor tests (p > 0.05). However, several exceptions have been noted in the control, rotenone, and probiotics groups when we compared their locomotor activity during the pretreatment and treatment interval (p < 0.05). We further assessed the role of rotenone in disturbing the detoxifying system as represented by three enzymes known as superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Despite the fact that there were no statistically significant changes within SOD and GPx levels between the control group and rotenone, probiotics, and rotenone + probiotics (p > 0.05), relevant changes have been observed between the analyzed groups (p < 0.05 and p < 0.005, respectively). On the other hand, significant differences (p < 0.05) have been observed for MDA when we analyzed the data between the control group and the other three groups. CONCLUSIONS Our results suggest that rotenone can be successfully used to trigger Parkinson's disease-related symptomatology in zebrafish.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Emanuela Paduraru
- Faculty of Geography and Geology, "Alexandru Ioan Cuza" University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Madalina-Andreea Robea
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University, Carol I Avenue, No 11, 700506 Iasi, Romania
| | - Roxana Jijie
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University, Carol I Avenue, No 11, 700506 Iasi, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I Avenue, No 20A, 700505 Iasi, Romania
| | - Ilinca-Bianca Nita
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No 16, 700115 Iasi, Romania
| | - Romeo Dobrin
- Department of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No 16, 700115 Iasi, Romania
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No 16, 700115 Iasi, Romania
| |
Collapse
|
12
|
Balmus IM, Cojocariu RO, Ciobica A, Strungaru S, Strungaru-Jijie R, Cantemir A, Galatanu C, Gorgan L. Preliminary Study on the Tears Oxidative Stress Status and Sleep Disturbances in Irritable Bowel Syndrome Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4690713. [PMID: 32566082 PMCID: PMC7271000 DOI: 10.1155/2020/4690713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
According to the latest gastrointestinal disorders diagnostic criteria (ROME IV), the irritable bowel syndrome (IBS) is mainly characterized by the presence of abdominal pain and changes in intestinal transit. However, both sleep impairments and oxidative status changes (in patients' sera, mucosal level, and other body fluids) were reported IBS. Thus, in this study, we aimed to evaluate several aspects regarding the oxidative stress status in patients' tears as well as sleep disturbances by comparison with the intensity of IBS symptoms, as assessed by the visual analogue scale for irritable bowel syndrome (VAS-IBS). Ten IBS patients and fourteen healthy sex- and age-matched volunteers were recruited from the Oftaprof Ophthalmological Clinic (Iași, Romania). Visual analogue scale for irritable bowel syndrome and the Pittsburgh Sleep Quality Index (PSQI) questionnaires were administered to all the patients. Tear samples were collected using the Schirmer test procedure and were subjected to biochemical analysis-superoxide dismutase and glutathione peroxidase activities, malondialdehyde, and total soluble proteins levels were determined. Standard statistical analysis was applied. We found significant differences in oxidative stress marker dynamics in IBS patients as compared to healthy age- and sex-matched controls: increased superoxide dismutase activity (p = 0.02), increased malondialdehyde (p = 0.007), and total soluble proteins levels (p = 0.019). We found no significant differences in tear glutathione peroxidase activity in IBS patients as compared to healthy age- and sex-matched controls (p = 0.55). Furthermore, we observed that the oxidative stress tear markers are correlated with gastrointestinal symptoms severity (as evaluated by VAS-IBS) but not correlated to the sleep quality index and items (as evaluated by PSQI), with significant differences according to patient sex and IBS subtype stratification. In this way, this study brings additional evidence of the oxidative stress role in IBS pathology alongside the evaluation of tear fluid molecular dynamics in IBS for the first time in our best knowledge.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, Alexandru Ioan Cuza University of Iași, Carol I Avenue, No. 11, Iași, Romania
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Carol I Avenue, 20A, Iași, Romania
| | - Roxana-Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Carol I Avenue, 20A, Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Carol I Avenue, 20A, Iași, Romania
| | - Stefan Strungaru
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Carol I Avenue, 20A, Iași, Romania
| | - Roxana Strungaru-Jijie
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Carol I Avenue, 20A, Iași, Romania
| | - Alina Cantemir
- Oftaprof Ophthalmological Clinic, Stejari Street, No. 54, Iași, Romania
| | - Catalina Galatanu
- Oftaprof Ophthalmological Clinic, Stejari Street, No. 54, Iași, Romania
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iași, Carol I Avenue, 20A, Iași, Romania
| |
Collapse
|
13
|
Balmus IM, Ciobica A, Cojocariu R, Luca AC, Gorgan L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. ACTA ACUST UNITED AC 2020; 56:medicina56040175. [PMID: 32295083 PMCID: PMC7230401 DOI: 10.3390/medicina56040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, exhibiting complex and controversial pathological features. Both oxidative stress and inflammation-related reactive oxygen species production may be involved in IBS pathological development. Thus, we focused on several aspects regarding the causes of oxidative stress occurrence in IBS. Additionally, in the molecular context of oxidative changes, we tried to discuss these possible neurological implications in IBS. Methods: The literature search included the main available databases (e.g., ScienceDirect, Pubmed/Medline, Embase, and Google Scholar). Articles in the English language were taken into consideration. Our screening was conducted based on several words such as “irritable bowel syndrome”, “gut brain axis”, “oxidative stress”, “neuroendocrine”, and combinations. Results: While no consistent evidence suggests clear pathway mechanisms, it seems that the inflammatory response may also be relevant in IBS. The mild implication of oxidative stress in IBS has been described through clinical studies and some animal models, revealing changes in the main markers such as antioxidant status and peroxidation markers. Moreover, it seems that the neurological structures involved in the brain-gut axis may be affected in IBS rather than the local gut tissue and functionality. Due to a gut-brain axis bidirectional communication error, a correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress can be suggested. Conclusions: Therefore, there is a possible correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress that are not followed by tissue destruction in IBS patients. Moreover, it is not yet clear whether oxidative stress, inflammation, or neurological impairments are key determinants or in which way these three interact in IBS pathology. However, the conditions in which oxidative imbalances occur may be an interesting research lead in order to find possible explanations for IBS development.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, No. 11, 700506 Iași, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Roxana Cojocariu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| |
Collapse
|
14
|
Balmus IM, Ilie-Dumitru O, Ciobica A, Cojocariu RO, Stanciu C, Trifan A, Cimpeanu M, Cimpeanu C, Gorgan L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise-Searching for Gap Fillers in the Oxidative Stress Way of Thinking. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:38. [PMID: 31963795 PMCID: PMC7023055 DOI: 10.3390/medicina56010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Irritable bowel syndrome (IBS) remains to date an intriguing functional gastrointestinal disorder. Recent studies described a multitude of exogenous factors that work together in IBS, gradually impairing intestinal lining cellular metabolism, including oxidative status balance, with or without a genetic background. Although the current biomarkers support the differentiation between IBS subtypes and other functional gastrointestinal disorder, they are mostly non-specific, referring to clinical, biochemical, and inflammatory imbalances. Since IBS could be also the result of deficient signaling pathways involving both gastrointestinal secretion and neuro-vegetative stimulation, IBS makes no exception from the oxidative hypothesis in the pathological mechanisms. Regarding the oxidative stress implication in IBS, the previous research efforts showed controversial results, with some animal models and patient studies reporting clear oxidative imbalance both on systemic and local levels, but still with no concrete evidence to point to a direct correlation between oxidative stress and IBS. Additionally, it seems that a major role could be also attributed to gut microbiota and their ability to shape our bodies and behaviors. Moreover, the genetic features study in IBS patients showed that several genetic similarities point to a possible correlation of IBS with affective spectrum disorders. Thus, we focus here the discussion on the assumption that IBS could in fact be more likely a stress-related disorder rather than a gastrointestinal one.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, No. 11, 700506 Iasi, Romania;
| | - Ovidiu Ilie-Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Roxana-Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Carol Stanciu
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania;
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iasi, Romania
| | - Mirela Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Cristian Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| |
Collapse
|