1
|
Wang X, Yu X, Wang Y, Lian J, Li Z, Dong C, Song H, Zhang L, Zhang H, Wang Y. MicroRNA-18b-5p Inhibits the Malignant Progression of Prostate Cancer Through Downregulating TRAF5. Int J Gen Med 2025; 18:1831-1843. [PMID: 40191236 PMCID: PMC11970425 DOI: 10.2147/ijgm.s494962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Objective Extensive efforts have been made for translating the mechanisms of microRNAs (miRNAs) in prostate cancer (PCa). However, the specific role of miR-18b-5p in PCa is still in obscurity. Herein, miR-18b-5p/TRAF5 axis-oriented exploration in PCa has been launched. Methods miR-18b-5p and TRAF5 expression in PCa tissues and cells was detected by RT-qPCR. In-vitro experiments were conducted to investigate the biological functions of miR-18b-5p and TRAF5 in PCa cells. The underlying mechanism of miR-18b-5p was revealed by luciferase reporter assay, miRNA Pull down, RT-qPCR, and rescue assay. Results Lower miR-18b-5p and higher TRAF5 expression were observed in PCa tissues and cell lines. miR-18b-5p overexpression or TRAF5 downregulation impaired proliferation, diminished migratory and invasive properties, as well as advanced apoptosis in PCa cells. miR-18b-5p could regulate TRAF5 expression by directly binding to its 3'-untranslated region. Overexpression of TRAF5 abolished the suppressive effects of restored miR-18b-5p on PCa cell progression. Conclusion This study elucidates that upregulated miR-18b-5p impedes PCa cell progression via downregulating TRAF5, which may provide a novel therapeutic basis for PCa.
Collapse
Affiliation(s)
- Xiaoran Wang
- Urology Surgery, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Xin Yu
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Yong Wang
- Urology Surgery, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Jihu Lian
- Urology Surgery, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Zhenxiao Li
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Chunli Dong
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Haitao Song
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Liangliang Zhang
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Haitao Zhang
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| | - Yongjie Wang
- Intensive Care Unit, The People Hospital of Jilin Province (Jilin Province Clinical Research Center of Emergency and Critical Diseases), Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
2
|
Choi S, Lee S, Han YH, Choi J, Kim I, Lee J, An HJ. miR-31-3p functions as a tumor suppressor by directly targeting GABBR2 in prostate cancer. Front Oncol 2022; 12:945057. [PMID: 36059697 PMCID: PMC9434366 DOI: 10.3389/fonc.2022.945057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are key regulators of gene expression in tumorigenesis. In this study, we investigated the tumor-suppressive function of miR-31-3p. Analysis of the Gene Expression Omnibus database revealed that the expression of miR-31-3p in prostate cancer tissues is lower than that in adjacent normal tissues from patients with prostate cancer. Moreover, miR-31-3p induces apoptosis in DU145, PC-3, and LNCap prostate cancer cells, while those transfected with miR-31-3p exhibit significantly decreased cell proliferation, migration, invasiveness, and tumor sphere-forming ability, as determined using the cell counting kit-8, transwell, and sphere-forming assays. Further analysis revealed that GABBR2 is a direct target of miR-31-3p. Within a DU145 xenograft murine model, intratumoral injection of a miR-31-3p mimic suppresses tumor growth. Taken together, the findings of this study suggest that miR-31-3p performs a novel tumor-suppressive function in prostate cancer and may represent a novel target for anti-prostate cancer miRNA therapeutics.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Yeongtong-gu, South Korea
| | - Isaac Kim
- Department of General Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Jusung Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| |
Collapse
|
3
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
4
|
Koh Y, Bustos MA, Moon J, Gross R, Ramos RI, Ryu S, Choe J, Lin SY, Allen WM, Krasne DL, Wilson TG, Hoon DSB. Urine Cell-Free MicroRNAs in Localized Prostate Cancer Patients. Cancers (Basel) 2022; 14:cancers14102388. [PMID: 35625992 PMCID: PMC9139357 DOI: 10.3390/cancers14102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men. Prostate-specific antigen screening is recommended for the detection of PCa. However, its specificity is limited. Thus, there is a need to find more reliable biomarkers that allow non-invasive screening for early-stage PCa. This study aims to explore urine microRNAs (miRs) as diagnostic biomarkers for PCa. We assessed cell-free miR (cfmiR) profiles of urine and plasma samples from pre- and post-operative PCa patients (n = 11) and normal healthy donors (16 urine and 24 plasma) using HTG EdgeSeq miRNA Whole Transcriptome Assay based on next-generation sequencing. Furthermore, tumor-related miRs were detected in formalin-fixed paraffin-embedded tumor tissues obtained from patients with localized PCa. Specific cfmiRs signatures were found in urine samples of localized PCa patients using differential expression analysis. Forty-two cfmiRs that were detected were common to urine, plasma, and tumor samples. These urine cfmiRs may have potential utility in diagnosing early-stage PCa and complementing or improving currently available PCa screening assays. Future studies may validate the findings.
Collapse
Affiliation(s)
- Yoko Koh
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | - Matias A. Bustos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
| | - Jamie Moon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
| | - Rebecca Gross
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
| | - Suyeon Ryu
- Genome Sequencing Center, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA;
| | - Jane Choe
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | | | - Warren M. Allen
- Division of Surgical Pathology, Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (W.M.A.); (D.L.K.)
| | - David L. Krasne
- Division of Surgical Pathology, Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (W.M.A.); (D.L.K.)
| | - Timothy G. Wilson
- Department of Urology and Urologic Oncology, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (J.C.); (T.G.W.)
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (Y.K.); (M.A.B.); (J.M.); (R.G.); (R.I.R.)
- Genome Sequencing Center, Saint John’s Cancer Institute (SJCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA;
- Correspondence:
| |
Collapse
|
5
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhai X, Wu Y, Zhang D, Li H, Chong T, Zhao J. MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis. J Bioenerg Biomembr 2021; 53:191-202. [PMID: 33686550 DOI: 10.1007/s10863-021-09888-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common renal malignancies in the urinary system. Numerous studies have demonstrated that miRNAs can regulate tumorigenesis and progression. This study aims to investigate the role and regulatory mechanism of miR-6838-5p in RCC. Our study confirmed that miR-6838-5p was upregulated in human RCC tissues (30/42, 77.43%, P < 0.01) and RCC cell lines (P < 0.05) compared to adjacent non-neoplastic tissues and normal renal epithelial cells. In vitro, overexpression of miR-6838-5p enhanced cell proliferation and invasion in human RCC cell lines (ACHN and 786-O), which were detected by CCK-8, Transwell and Colony formation assays (P < 0.05), and knockdown of miR-6838-5p suppressed cell proliferation and invasion (P < 0.05). Results of Bioinformatics analysis combined with Dual-luciferase reporter gene assay demonstrated that miR-6838-5p could bind to Cyclin D binding myb-like transcription factor 1 (DMTF1). In addition, RT-qPCR and Western blotting confirmed that DMTF1 was downregulated in RCC tissues and cell lines. Meanwhile, it was demonstrated that overexpression of miR-6838-5p inhibited DMTF1 level in ACHN cells. Next, we confirmed that DMTF1 overexpression reversed the inhibitory effects of overexpression of miR-6838-5p on phosphatase and tensin homolog (PTEN), tumor protein 53(p53), murine double minute 2 (MDM2) and alternative reading frame (ARF) protein levels in the ARF-p53 signaling pathway. In conclusion, our research showed that miR-6838-5p enhanced the proliferation and invasion of RCC cells by inhibiting the DMTF1/ARF-p53 axis.
Collapse
Affiliation(s)
- Xiaoqiang Zhai
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yan Wu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Dong Zhang
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Zhao
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
7
|
Wu L, Quan W, Yue G, Luo Q, Peng D, Pan Y, Zhang G. Identification of a novel six autophagy-related genes signature for the prognostic and a miRNA-related autophagy predictor for anti-PD-1 therapy responses in prostate cancer. BMC Cancer 2021; 21:15. [PMID: 33402116 PMCID: PMC7786978 DOI: 10.1186/s12885-020-07725-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Autophagy is a highly conserved homeostatic process in the human body that is responsible for the elimination of aggregated proteins and damaged organelles. Several autophagy-related genes (ARGs) contribute to the process of tumorigenesis and metastasis of prostate cancer (PCa). Also, miRNAs have been proven to modulate autophagy by targeting some ARGs. However, their potential role in PCa still remains unclear. Methods An univariate Cox proportional regression model was used to identify 17 ARGs associated with the overall survival (OS) of PCa. Then, a multivariate Cox proportional regression model was used to construct a 6 autophagy-related prognostic genes signature. Patients were divided into low-risk group and high-risk group using the median risk score as a cutoff value. High-risk patients had shorter OS than low-risk patients. Furthermore, the signature was validated by ROC curves. Regarding mRNA and miRNA, 12 differentially expressed miRNAs (DEMs) and 1073 differentially expressed genes (DEGs) were detected via the GEO database. We found that miR-205, one of the DEMs, was negatively regulated the expression of ARG (NKX2–3). Based on STRING analysis results, we found that the NKX2–3 was moderately related to the part of genes among the 6 autophagy-related genes prognostic signature. Further, NKX 2–3 was significantly correlated with OS and some clinical parameters of PCa by cBioProtal. By gene set enrichment analysis (GSEA). Lastly, we demonstrated that the association between NKX2–3 and tumor mutation burden (TMB) and PDCD1 (programmed cell death 1) of PCa. Results We identified that the six ARGs expression patterns are independent predictors of OS in PCa patients. Furthermore, our results suggest that ARGs and miRNAs are inter-related. MiR-205 was negatively regulated the expression of ARG (NKX2–3). Further analysis demonstrated that NKX2–3 may be a potential biomarker for predicting the efficacy of anti-PD-1 therapy in PCa. Conclusions The current study may offer a novel autophagy-related prognostic signature and may identify a promising miRNA-ARG pathway for predicting the efficacy of anti-PD-1 therapy in PCa.
Collapse
Affiliation(s)
- Lei Wu
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Wen Quan
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Guojun Yue
- Zunyi Medical University, Zunyi, Guizhou Province, P. R. China
| | - Qiong Luo
- Department of Oncology, Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai, Guangdong Province, P. R. China
| | - Dongxu Peng
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Ying Pan
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China.
| | - Guihai Zhang
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China. .,Zunyi Medical University, Zunyi, Guizhou Province, P. R. China.
| |
Collapse
|
8
|
Munteanu VC, Munteanu RA, Gulei D, Schitcu VH, Petrut B, Berindan Neagoe I, Achimas Cadariu P, Coman I. PSA Based Biomarkers, Imagistic Techniques and Combined Tests for a Better Diagnostic of Localized Prostate Cancer. Diagnostics (Basel) 2020; 10:E806. [PMID: 33050493 PMCID: PMC7601671 DOI: 10.3390/diagnostics10100806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer represents the most encountered urinary malignancy in males over 50 years old, and the second most diagnosed after lung cancer globally. Digital rectal examination and prostatic specific antigen were the long-time standard tools for diagnosis but with a significant risk of overdiagnosis and overtreatment. Magnetic resonance imaging recently entered the diagnosis process, but to this date, there is no specific biomarker that accurately indicates whether to proceed with the prostate biopsy. Research in this area has gone towards this direction, and recently, serum, urine, imagistic, tissue biomarkers, and Risk Calculators promise to help better diagnose and stratify prostate cancer. In order to eliminate the comorbidities that appear along with the diagnosis and treatment of this disease, there is a constant need to implement new diagnostic strategies. Important uro-oncology associations recommend the use of novel biomarkers in the grey area of prostate cancer, to better distinguish the next step in the diagnostic process. Although it is not that simple, they should be integrated according to the clinical policies, and it should be considered that statistical significance does not always equal clinical significance. In this review, we analyzed the contribution of prostate-specific antigen (PSA)-based biomarkers (PHI, PHID, 4Kscore, STHLM3), imagistic techniques (mp-MRI and mp-US), and combined tests in the early diagnosis process of localized prostate cancer.
Collapse
Affiliation(s)
- Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (V.H.S.); (B.P.)
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Andrada Munteanu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.A.M.); (D.G.)
| | - Diana Gulei
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.A.M.); (D.G.)
| | - Vlad Horia Schitcu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (V.H.S.); (B.P.)
| | - Bogdan Petrut
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (V.H.S.); (B.P.)
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Patriciu Achimas Cadariu
- Surgery Department, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania;
- Department of Surgery and Gynecological Oncology, the University of Medicine and Pharmacy “Iuliu Hatieganu”, 400337 Cluj-Napoca, Romania
| | - Ioan Coman
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Borkowetz A, Lohse-Fischer A, Scholze J, Lotzkat U, Thomas C, Wirth MP, Fuessel S, Erdmann K. Evaluation of MicroRNAs as Non-Invasive Diagnostic Markers in Urinary Cells from Patients with Suspected Prostate Cancer. Diagnostics (Basel) 2020; 10:E578. [PMID: 32784833 PMCID: PMC7460346 DOI: 10.3390/diagnostics10080578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Currently used tumor markers for early diagnosis of prostate cancer (PCa) are often lacking sufficient specificity and sensitivity. Therefore, the diagnostic potential of selected microRNAs in comparison to serum PSA levels and PSA density (PSAD) was explored. A panel of 12 PCa-associated microRNAs was quantified by qPCR in urinary sediments from 50 patients with suspected PCa undergoing prostate biopsy, whereupon PCa was detected in 26 patients. Receiver operating characteristic (ROC) curve analyses revealed a potential for non-invasive urine-based PCa detection for miR-16 (AUC = 0.744, p = 0.012; accuracy = 76%) and miR-195 (AUC = 0.729, p = 0.017; accuracy = 70%). While serum PSA showed an insufficient diagnostic value (AUC = 0.564, p = 0.656; accuracy = 50%) in the present cohort, PSAD displayed an adequate diagnostic performance (AUC = 0.708, p = 0.031; accuracy = 70%). Noteworthy, the combination of PSAD with the best candidates miR-16 and miR-195 either individually or simultaneously improved the diagnostic power (AUC = 0.801-0.849, p < 0.05; accuracy = 76-90%). In the sub-group of patients with PSA ≤ 10 ng/mL (n = 34), an inadequate diagnostic power of PSAD alone (AUC = 0.595, p = 0.524; accuracy = 68%) was markedly surpassed by miR-16 and miR-195 individually as well as by their combination with PSAD (AUC = 0.772-0.882, p < 0.05; accuracy = 74-85%). These findings further highlight the potential of urinary microRNAs as molecular markers with high clinical performance. Overall, these results need to be validated in a larger patient cohort.
Collapse
Affiliation(s)
- Angelika Borkowetz
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andrea Lohse-Fischer
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
| | - Jana Scholze
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
| | - Ulrike Lotzkat
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Manfred P. Wirth
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kati Erdmann
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (A.B.); (A.L.-F.); (J.S.); (U.L.); (C.T.); (M.P.W.); (S.F.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
10
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|