1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 PMCID: PMC11801294 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Saeedi P, Nilchiani LS, Zand B, Hajimirghasemi M, Halabian R. An overview of stem cells and cell products involved in trauma injury. Regen Ther 2025; 29:60-76. [PMID: 40143930 PMCID: PMC11938091 DOI: 10.1016/j.reth.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Trauma injuries represent a significant public health burden worldwide, often leading to long-term disability and reduced quality of life. This review provides a comprehensive overview of the therapeutic potential of stem cells and cell products for traumatic injuries. The extraordinary characteristics of stem cells, such as self-renewal and transdifferentiation, make them definitive candidates for tissue regeneration. Mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) have been tested in preclinical studies for treating distinct traumatic injuries. Stem cell mechanisms of action are addressed through paracrine signaling, immunomodulation, differentiation, and neuroprotection. Cell products such as conditioned media, exosomes, and secretomes offer cell-free resources, thereby avoiding the risks of live cell transplantation. Clinical trials have reported many effective outcomes; however, variability exists across trauma types. Some challenges include tumorigenicity, standardized protocols, and regulatory issues. Collaboration and interdisciplinary research are being conducted to harness stem cells and products for trauma treatment. This emerging field is promising for improving patient recovery and quality of life after traumatic injuries.
Collapse
Affiliation(s)
- Pardis Saeedi
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Nilchiani
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Bita Zand
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Maryam Hajimirghasemi
- Department of Internal Medicine, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
4
|
Vanacore G, Christensen JB, Bayin NS. Age-dependent regenerative mechanisms in the brain. Biochem Soc Trans 2024; 52:2243-2252. [PMID: 39584473 DOI: 10.1042/bst20230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Repairing the adult mammalian brain represents one of the greatest clinical challenges in medicine. Injury to the adult brain often results in substantial loss of neural tissue and permanent functional impairment. In contrast with the adult, during development, the mammalian brain exhibits a remarkable capacity to replace lost cells. A plethora of cell-intrinsic and extrinsic factors regulate the age-dependent loss of regenerative potential in the brain. As the developmental window closes, neural stem cells undergo epigenetic changes, limiting their proliferation and differentiation capacities, whereas, changes in the brain microenvironment pose additional challenges opposing regeneration, including inflammation and gliosis. Therefore, studying the regenerative mechanisms during development and identifying what impairs them with age may provide key insights into how to stimulate regeneration in the brain. Here, we will discuss how the mammalian brain engages regenerative mechanisms upon injury or neuron loss. Moreover, we will describe the age-dependent changes that affect these processes. We will conclude by discussing potential therapeutic approaches to overcome the age-dependent regenerative decline and stimulate regeneration.
Collapse
Affiliation(s)
- Giada Vanacore
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jens Bager Christensen
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - N Sumru Bayin
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
5
|
Shin HE, Lee WJ, Park KS, Yu Y, Kim G, Roh EJ, Song BG, Jung JH, Cho K, Ha YH, Yang YI, Han I. Repeated intrathecal injections of peripheral nerve-derived stem cell spheroids improve outcomes in a rat model of traumatic brain injury. Stem Cell Res Ther 2024; 15:314. [PMID: 39300591 DOI: 10.1186/s13287-024-03874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide. However, existing treatments still face numerous clinical challenges. Building on our prior research showing peripheral nerve-derived stem cell (PNSC) spheroids with Schwann cell-like phenotypes can secrete neurotrophic factors to aid in neural tissue regeneration, we hypothesized that repeated intrathecal injections of PNSC spheroids would improve the delivery of neurotrophic factors, thereby facilitating the restoration of neurological function and brain tissue repair post-TBI. METHODS We generated PNSC spheroids from human peripheral nerve tissue using suspension culture techniques. These spheroids were characterized using flow cytometry, immunofluorescence, and reverse-transcription polymerase chain reaction. The conditioned media were evaluated in SH-SY5Y and RAW264.7 cell lines to assess their effects on neurogenesis and inflammation. To simulate TBI, we established a controlled cortical impact (CCI) model in rats. The animals were administered intrathecal injections of PNSC spheroids on three occasions, with each injection spaced at a 3-day interval. Recovery of sensory and motor function was assessed using the modified neurological severity score (mNSS) and rotarod tests, while histological (hematoxylin and eosin, Luxol fast blue staining) and T2-weighted magnetic resonance imaging analyses, alongside immunofluorescence, were conducted to evaluate the recovery of neural structures and pathophysiology. RESULTS PNSC spheroids expressed high levels of Schwann cell markers and neurotrophic factors, such as neurotrophin-3 and Ephrin B3. Their conditioned medium was found to promote neurite outgrowth, reduce reactive oxygen species-mediated cell death and inflammation, and influence M1-M2 macrophage polarization. In the CCI rat model, rats receiving repeated triple intrathecal injections of PNSC spheroids showed significant improvements in sensory and motor function, with considerable neural tissue recovery in damaged areas. Notably, this treatment promoted nerve regeneration, axon regrowth, and remyelination. It also reduced glial scar formation and inflammation, while encouraging angiogenesis. CONCLUSION Our findings suggest that repeated intrathecal injections of PNSC spheroids can significantly enhance neural recovery after TBI. This effect is mediated by the diverse neurotrophic factors secreted by PNSC spheroids. Thus, the strategy of combining therapeutic cell delivery with multiple intrathecal injections holds promise as a novel clinical treatment for TBI recovery.
Collapse
Affiliation(s)
- Hae Eun Shin
- Department of Life Science, CHA University School of Medicine, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Won-Jin Lee
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, 47392, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea
- Convergence Stem Cell Therapy Research Team, CHA Future Medical Research Institute, Seongnam, 13496, Gyeonggi-do, Korea
| | - Yerin Yu
- Department of Life Science, CHA University School of Medicine, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Gyubin Kim
- Department of Life Science, CHA University School of Medicine, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Life Science, CHA University School of Medicine, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Byeong Gwan Song
- Department of Life Science, CHA University School of Medicine, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Joon-Hyuk Jung
- Department of Life Science, CHA University School of Medicine, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Kwangrae Cho
- Department of Anesthesiology and Pain Medicine, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Young-Hu Ha
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, 47392, Republic of Korea
- Innostem Bio, Busan, 47392, Republic of Korea
| | - Young-Il Yang
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, 47392, Republic of Korea.
- Innostem Bio, Busan, 47392, Republic of Korea.
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, 13496, Gyeonggi-do, Republic of Korea.
- Convergence Stem Cell Therapy Research Team, CHA Future Medical Research Institute, Seongnam, 13496, Gyeonggi-do, Korea.
| |
Collapse
|
6
|
Zhang Y, Zheng Z, Sun J, Xu S, Wei Y, Ding X, Ding G. The application of mesenchymal stem cells in the treatment of traumatic brain injury: Mechanisms, results, and problems. Histol Histopathol 2024; 39:1109-1131. [PMID: 38353136 DOI: 10.14670/hh-18-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.
Collapse
Affiliation(s)
- Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, Shandong Province, China.
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
7
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Xu H, Wang B, Li A, Wen J, Su H, Qin D. Mesenchymal Stem Cells-based Cell-free Therapy Targeting Neuroinflammation. Aging Dis 2024; 15:965-976. [PMID: 38722791 PMCID: PMC11081161 DOI: 10.14336/ad.2023.0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 05/13/2024] Open
Abstract
Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.
Collapse
Affiliation(s)
- Hongjie Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Bin Wang
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong SAR, China
| |
Collapse
|
9
|
Deng T, Ding R, Wang Y, Chen Y, Sun H, Zheng M. Mapping knowledge of the stem cell in traumatic brain injury: a bibliometric and visualized analysis. Front Neurol 2024; 15:1301277. [PMID: 38523616 PMCID: PMC10957745 DOI: 10.3389/fneur.2024.1301277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a brain function injury caused by external mechanical injury. Primary and secondary injuries cause neurological deficits that mature brain tissue cannot repair itself. Stem cells can self-renewal and differentiate, the research of stem cells in the pathogenesis and treatment of TBI has made significant progress in recent years. However, numerous articles must be summarized to analyze hot spots and predict trends. This study aims to provide a panorama of knowledge and research hotspots through bibliometrics. Method We searched in the Web of Science Core Collection (WoSCC) database to identify articles pertaining to TBI and stem cells published between 2000 and 2022. Visualization knowledge maps, including co-authorship, co-citation, and co-occurrence analysis were generated by VOSviewer, CiteSpace, and the R package "bibliometrix." Results We retrieved a total of 459 articles from 45 countries. The United States and China contributed the majority of publications. The number of publications related to TBI and stem cells is increasing yearly. Tianjin Medical University was the most prolific institution, and Professor Charles S. Cox, Jr. from the University of Texas Health Science Center at Houston was the most influential author. The Journal of Neurotrauma has published the most research articles on TBI and stem cells. Based on the burst references, "immunomodulation," "TBI," and "cellular therapy" have been regarded as research hotspots in the field. The keywords co-occurrence analysis revealed that "exosomes," "neuroinflammation," and "microglia" were essential research directions in the future. Conclusion Research on TBI and stem cells has shown a rapid growth trend in recent years. Existing studies mainly focus on the activation mechanism of endogenous neural stem cells and how to make exogenous stem cell therapy more effective. The combination with bioengineering technology is the trend in this field. Topics related to exosomes and immune regulation may be the future focus of TBI and stem cell research.
Collapse
Affiliation(s)
- Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yueyang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hongtao Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Song X, Zhang Y, Tang Z, Du L. Advantages of nanocarriers for basic research in the field of traumatic brain injury. Neural Regen Res 2024; 19:237-245. [PMID: 37488872 PMCID: PMC10503611 DOI: 10.4103/1673-5374.379041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 05/06/2023] [Indexed: 07/26/2023] Open
Abstract
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue. To overcome this problem, researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems. In this review, we summarize the epidemiology, basic pathophysiology, current clinical treatment, the establishment of models, and the evaluation indicators that are commonly used for traumatic brain injury. We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles. Nanocarriers can overcome a variety of key biological barriers, improve drug bioavailability, increase intracellular penetration and retention time, achieve drug enrichment, control drug release, and achieve brain-targeting drug delivery. However, the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.
Collapse
Affiliation(s)
- Xingshuang Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yizhi Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lina Du
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Pharmaceutics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
11
|
Kapate N, Liao R, Sodemann RL, Stinson T, Prakash S, Kumbhojkar N, Suja VC, Wang LLW, Flanz M, Rajeev R, Villafuerte D, Shaha S, Janes M, Park KS, Dunne M, Golemb B, Hone A, Adebowale K, Clegg J, Slate A, McGuone D, Costine-Bartell B, Mitragotri S. Backpack-mediated anti-inflammatory macrophage cell therapy for the treatment of traumatic brain injury. PNAS NEXUS 2024; 3:pgad434. [PMID: 38187808 PMCID: PMC10768983 DOI: 10.1093/pnasnexus/pgad434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Traumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities. Macrophages are particularly suited for this task, given the role of macrophages and microglia in the dysregulated inflammatory response after TBI. However, maintaining adoptively transferred macrophages in an anti-inflammatory, wound-healing phenotype against the proinflammatory TBI milieu is essential. To achieve this, we developed discoidal microparticles, termed backpacks, encapsulating anti-inflammatory interleukin-4, and dexamethasone for ex vivo macrophage attachment. Backpacks durably adhered to the surface of macrophages without internalization and maintained an anti-inflammatory phenotype of the carrier macrophage through 7 days in vitro. Backpack-macrophage therapy was scaled up and safely infused into piglets in a cortical impact TBI model. Backpack-macrophages migrated to the brain lesion site and reduced proinflammatory activation of microglia in the lesion penumbra of the rostral gyrus of the cortex and decreased serum concentrations of proinflammatory biomarkers. These immunomodulatory effects elicited a 56% decrease in lesion volume. The results reported here demonstrate, to the best of our knowledge, a potential use of a cell therapy intervention for a large animal model of TBI and highlight the potential of macrophage-based therapy. Further investigation is required to elucidate the neuroprotection mechanisms associated with anti-inflammatory macrophage therapy.
Collapse
Affiliation(s)
- Neha Kapate
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rick Liao
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Ryan Luke Sodemann
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tawny Stinson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Supriya Prakash
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Ninad Kumbhojkar
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Vineeth Chandran Suja
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Lily Li-Wen Wang
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mikayla Flanz
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Rohan Rajeev
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dania Villafuerte
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Suyog Shaha
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Morgan Janes
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Michael Dunne
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Bryan Golemb
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander Hone
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kolade Adebowale
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - John Clegg
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Andrea Slate
- Center of Comparative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Beth Costine-Bartell
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| |
Collapse
|
12
|
Lin WY, Wu KH, Chen CY, Guo BC, Chang YJ, Lee TA, Lin MJ, Wu HP. Stem Cell Therapy in Children with Traumatic Brain Injury. Int J Mol Sci 2023; 24:14706. [PMID: 37834152 PMCID: PMC10573043 DOI: 10.3390/ijms241914706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pediatric traumatic brain injury is a cause of major mortality, and resultant neurological sequelae areassociated with long-term morbidity. Increasing studies have revealed stem cell therapy to be a potential new treatment. However, much work is still required to clarify the mechanism of action of effective stem cell therapy, type of stem cell therapy, optimal timing of therapy initiation, combination of cocurrent medical treatment and patient selection criteria. This paper will focus on stem cell therapy in children with traumatic brain injury.
Collapse
Affiliation(s)
- Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tung’s Taichung MetroHarbor Hospital, Taichung 433, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 79-9, Taiwan
| | - Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 427413, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| |
Collapse
|
13
|
Harley-Troxell ME, Steiner R, Advincula RC, Anderson DE, Dhar M. Interactions of Cells and Biomaterials for Nerve Tissue Engineering: Polymers and Fabrication. Polymers (Basel) 2023; 15:3685. [PMID: 37765540 PMCID: PMC10536046 DOI: 10.3390/polym15183685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Neural injuries affect millions globally, significantly impacting their quality of life. The inability of these injuries to heal, limited ability to regenerate, and the lack of available treatments make regenerative medicine and tissue engineering a promising field of research for developing methods for nerve repair. This review evaluates the use of natural and synthetic polymers, and the fabrication methods applied that influence a cell's behavior. Methods include cross-linking hydrogels, incorporation of nanoparticles, and 3D printing with and without live cells. The endogenous cells within the injured area and any exogenous cells seeded on the polymer construct play a vital role in regulating healthy neural activity. This review evaluates the body's local and systemic reactions to the implanted materials. Although numerous variables are involved, many of these materials and methods have exhibited the potential to provide a biomaterial environment that promotes biocompatibility and the regeneration of a physical and functional nerve. Future studies may evaluate advanced methods for modifying material properties and characterizing the tissue-biomaterial interface for clinical applications.
Collapse
Affiliation(s)
- Meaghan E. Harley-Troxell
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Richard Steiner
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Rigoberto C. Advincula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA;
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
| | - David E. Anderson
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| |
Collapse
|
14
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
15
|
Chen T, Xia Y, Zhang L, Xu T, Yi Y, Chen J, Liu Z, Yang L, Chen S, Zhou X, Chen X, Wu H, Liu J. Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater Today Bio 2023; 19:100606. [PMID: 37063247 PMCID: PMC10102240 DOI: 10.1016/j.mtbio.2023.100606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.
Collapse
Affiliation(s)
- Tiange Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Yan Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Hunan, China
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Ziyuan Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siming Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Corresponding author. Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Rd, Kaifu District, Changsha, 410008, PR China.
| |
Collapse
|
16
|
Zhao B, Wang H. Effect of integrated perioperative rehabilitation intervention under the fast-track surgery concept on stress and complications in patients undergoing craniocerebral injury surgery. Front Surg 2023; 9:1014211. [PMID: 36684229 PMCID: PMC9852531 DOI: 10.3389/fsurg.2022.1014211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/11/2022] [Indexed: 01/09/2023] Open
Abstract
Objective To observe the intervention effect of perioperative rehabilitation intervention of integrated medical care the concept of FTS on stress response and postoperative complications in patients undergoing craniocerebral injury surgery. Methods 70 patients with Traumatic brain injury (TBI) admitted to the Department of Neurosurgery of our Hospital from January 2019 to December 2021 were as the research objects and were divided into general group and FTS group according to the random number table method, with 35 cases in each group. The general group was intervened with perioperative basic nursing measures for TBI, and the FTS group was intervened with perioperative rehabilitation model of integrated medical care under the concept of FTS on the basis of the general group. The two groups of patients were compared in hemodynamic indexes (heart rate, mean arterial pressure), stress hormone levels (CORT, GLU, E), changes in motor neurological function (GCS score, NHISS score, FMA score), occurrence of postoperative complications (infection, pressure sores, rebleeding, central hyperthermia), short-term quality of life (SF-36) before and after the intervention. Results After intervention, the levels of HR, MAP, COR, GLU, and E were significantly lower in FTS group than in the general group (all P < 0.05). After intervention, the Fugl-Meyer score and Barthel index score of upper and lower extremities in both groups were significantly higher than those before intervention, and the FTS group was higher than the general group, and the difference was statistically significant (P < 0.05). After the intervention, the NIHSS scores were significantly lower in both groups than before the intervention, and the FTS group was lower than the general group, and the differences were statistically significant (P < 0.05). Short-term physical function, somatic pain, physical function, general health status, social function, energy, mental health, and emotional function scores were significantly higher in the FTS group than in thegeneral group, and all differences were statistically significant (P < 0.05). The total incidence of infection, pressure ulcers, rebleeding, central high fever and other complications in the FTS group was significantly lower than that in the general group (P < 0.05). Conclusion The implementation of integrated perioperative rehabilitation interventions under the concept of FTS for patients with TBI can significantly alleviate patients' stress, promote recovery, reduce the incidence of complications, and improve short-term quality of life, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Taditional Chinese Medicine Rehabilitation, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Wang
- Trauma Center, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Correspondence: Heng Wang binbinjoyce126.com
| |
Collapse
|
17
|
Rauchman SH, Zubair A, Jacob B, Rauchman D, Pinkhasov A, Placantonakis DG, Reiss AB. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front Neurosci 2023; 17:1090672. [PMID: 36908792 PMCID: PMC9995859 DOI: 10.3389/fnins.2023.1090672] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Traumatic brain injury (TBI) results when external physical forces impact the head with sufficient intensity to cause damage to the brain. TBI can be mild, moderate, or severe and may have long-term consequences including visual difficulties, cognitive deficits, headache, pain, sleep disturbances, and post-traumatic epilepsy. Disruption of the normal functioning of the brain leads to a cascade of effects with molecular and anatomical changes, persistent neuronal hyperexcitation, neuroinflammation, and neuronal loss. Destructive processes that occur at the cellular and molecular level lead to inflammation, oxidative stress, calcium dysregulation, and apoptosis. Vascular damage, ischemia and loss of blood brain barrier integrity contribute to destruction of brain tissue. This review focuses on the cellular damage incited during TBI and the frequently life-altering lasting effects of this destruction on vision, cognition, balance, and sleep. The wide range of visual complaints associated with TBI are addressed and repair processes where there is potential for intervention and neuronal preservation are highlighted.
Collapse
Affiliation(s)
| | - Aarij Zubair
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Benna Jacob
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Danielle Rauchman
- Department of Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Aaron Pinkhasov
- NYU Long Island School of Medicine, Mineola, NY, United States
| | | | - Allison B Reiss
- NYU Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
18
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Aghili-Mehrizi S, Williams E, Yan S, Willman M, Willman J, Lucke-Wold B. Secondary Mechanisms of Neurotrauma: A Closer Look at the Evidence. Diseases 2022; 10:30. [PMID: 35645251 PMCID: PMC9149951 DOI: 10.3390/diseases10020030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic central nervous system injury is a leading cause of neurological injury worldwide. While initial neuroresuscitative efforts are focused on ameliorating the effects of primary injury through patient stabilization, secondary injury in neurotrauma is a potential cause of cell death, oxidative stress, and neuroinflammation. These secondary injuries lack defined therapy. The major causes of secondary injury in neurotrauma include endoplasmic reticular stress, mitochondrial dysfunction, and the buildup of reactive oxygen or nitrogenous species. Stress to the endoplasmic reticulum in neurotrauma results in the overactivation of the unfolded protein response with subsequent cell apoptosis. Mitochondrial dysfunction can lead to the release of caspases and the buildup of reactive oxygen species; several characteristics make the central nervous system particularly susceptible to oxidative damage. Together, endoplasmic reticulum, mitochondrial, and oxidative stress can have detrimental consequences, beginning moments and lasting days to months after the primary injury. Understanding these causative pathways has led to the proposal of various potential treatment options.
Collapse
Affiliation(s)
- Sina Aghili-Mehrizi
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.W.); (S.Y.); (M.W.); (J.W.)
| | | | | | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.W.); (S.Y.); (M.W.); (J.W.)
| |
Collapse
|
20
|
He XC, Wang J, Du HZ, Liu CM, Teng ZQ. Intranasal Administration of Agomir-let-7i Improves Cognitive Function in Mice with Traumatic Brain Injury. Cells 2022; 11:cells11081348. [PMID: 35456028 PMCID: PMC9027059 DOI: 10.3390/cells11081348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Overcoming the lack of drugs for the treatment of traumatic brain injury (TBI) has long been a major challenge for the pharmaceutical industry. MiRNAs have emerged as potential targets for progress assessment and intervention against TBI. The brain-enriched miRNA let-7i has been proposed as an ideal candidate biomarker for TBI, but its regulatory roles in brain injury remain largely unknown. Here, we find that the expression of let-7i is significantly downregulated in the early stages of a hippocampal stab wound injury. The noninvasive intranasal administration of let-7i agomir significantly improves cognitive function and suppresses neuroinflammation, glial scar formation, and neuronal apoptosis in TBI mice. Mechanically, STING is a direct downstream target of let-7i after brain injury. Furthermore, the intranasal delivery of let-7i agomir can also effectively inhibit STING and is beneficial for inflammation resolution and neuronal survival in a mouse model of pial vessel disruption stroke. Consequently, let-7i agomir is a promising candidate for clinical application as a chemically engineered oligonucleotides-based therapeutic for brain injury.
Collapse
Affiliation(s)
- Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (X.-C.H.); (J.W.); (H.-Z.D.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jian Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (X.-C.H.); (J.W.); (H.-Z.D.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (X.-C.H.); (J.W.); (H.-Z.D.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (X.-C.H.); (J.W.); (H.-Z.D.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.-M.L.); (Z.-Q.T.); Tel.: +86-10-8261-9690 (C.-M.L.)
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (X.-C.H.); (J.W.); (H.-Z.D.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.-M.L.); (Z.-Q.T.); Tel.: +86-10-8261-9690 (C.-M.L.)
| |
Collapse
|
21
|
Wang G, Wu HL, Liu YP, Yan DQ, Yuan ZL, Chen L, Yang Q, Gao YS, Diao B. Pre-clinical study of human umbilical cord mesenchymal stem cell transplantation for the treatment of traumatic brain injury: safety evaluation from immunogenic and oncogenic perspectives. Neural Regen Res 2022; 17:354-361. [PMID: 34269210 PMCID: PMC8463980 DOI: 10.4103/1673-5374.317985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cell therapy is a promising strategy for the treatment of traumatic brain injury (TBI). However, animal experiments are needed to evaluate safety; in particular, to examine the immunogenicity and tumorigenicity of human umbilical cord mesenchymal stem cells (huMSCs) before clinical application. In this study, huMSCs were harvested from human amniotic membrane and umbilical cord vascular tissue. A rat model of TBI was established using the controlled cortical impact method. Starting from the third day after injury, the rats were injected with 10 μL of 5 × 106/mL huMSCs by cerebral stereotaxis or with 500 μL of 1 × 106/mL huMSCs via the tail vein for 3 successive days. huMSC transplantation decreased the serum levels of proinflammatory cytokines in rats with TBI and increased the serum levels of anti-inflammatory cytokines, thereby exhibiting good immunoregulatory function. The transplanted huMSCs were distributed in the liver, lung and brain injury sites. No abnormal proliferation or tumorigenesis was found in these organs up to 12 months after transplantation. The transplanted huMSCs negligibly proliferated in vivo, and apoptosis was gradually observed at later stages. These findings suggest that huMSC transplantation for the treatment of traumatic brain injury displays good safety. In addition, huMSCs exhibit good immunoregulatory function, which can help prevent and reduce secondary brain injury caused by the rapid release of inflammatory factors after TBI. This study was approved by the Ethics Committee of Wuhan General Hospital of PLA (approval No. 20160054) on November 1, 2016.
Collapse
Affiliation(s)
- Gang Wang
- Basic Medical Laboratory, General Hospital of the Central Theater Command; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, China
| | - Hua-Ling Wu
- Department of Clinical Laboratory, The Third People's Hospital of Yongzhou, Yongzhou, Hunan Province, China
| | - Yue-Ping Liu
- Basic Medical Laboratory, General Hospital of the Central Theater Command; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, China
| | - De-Qi Yan
- Department of Neurosurgery, 990th Hospital of Joint Logistic Support Troops of PLA, Zhumadian, Henan Province, China
| | - Zi-Lin Yuan
- Basic Medical Laboratory, General Hospital of the Central Theater Command; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, China
| | - Li Chen
- Basic Medical Laboratory, General Hospital of the Central Theater Command; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, China
| | - Qian Yang
- Basic Medical Laboratory, General Hospital of the Central Theater Command; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, China
| | - Yu-Song Gao
- Department of Neurosurgery, 990th Hospital of Joint Logistic Support Troops of PLA, Zhumadian, Henan Province, China
| | - Bo Diao
- Basic Medical Laboratory, General Hospital of the Central Theater Command; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei Province, China
| |
Collapse
|
22
|
Jovanovich N, Habib A, Kodavali C, Edwards L, Amankulor N, Zinn PO. The Evolving Role of Induced Pluripotent Stem Cells and Cerebral Organoids in Treating and Modeling Neurosurgical Diseases. World Neurosurg 2021; 155:171-179. [PMID: 34454068 PMCID: PMC11572538 DOI: 10.1016/j.wneu.2021.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022]
Abstract
Over the past decade, the use of induced pluripotent stem cells (IPSCs), as both direct therapeutics and building blocks for 3D in vitro models, has exhibited exciting potential in both helping to elucidate pathogenic mechanisms and treating diseases relevant to neurosurgery. Transplantation of IPSCs is being studied in neurological injuries and diseases, such as spinal cord injury and Parkinson's disease, whose clinical manifestations stem from underlying neuronal and/or axonal degeneration. Both animal models and clinical trials have shown that IPSCs have the ability to regenerate damaged neural tissue. Such evidence makes IPSCs a potentially promising therapeutic modality for patients who suffer from these neurological injuries/diseases. In addition, the cerebral organoid, a 3D assembly of IPSC aggregates that develops heterogeneous brain regions, has become the first in vitro model to closely recapitulate the complexity of the brain extracellular matrix, a 3-dimensional network of molecules that structurally and biochemically support neighboring cells. Cerebral organoids have become an exciting prospect for modeling and testing drug susceptibility of brain tumors, such as glioblastoma and metastatic brain cancer. As patient-derived organoid models are becoming more faithful to the brain, they are becoming an increasingly accurate substitute for patient clinical trials; such patient-less trials would protect the patient from potentially ineffective drugs, and speed up trial results and optimize cost. In this review, we aim to describe the role of IPSCs and cerebral organoids in treating and modeling diseases that are relevant to neurosurgery.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Chowdari Kodavali
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Lincoln Edwards
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nduka Amankulor
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pascal O Zinn
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
24
|
Neurogenic Potential of the 18-kDa Mitochondrial Translocator Protein (TSPO) in Pluripotent P19 Stem Cells. Cells 2021; 10:cells10102784. [PMID: 34685764 PMCID: PMC8534396 DOI: 10.3390/cells10102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
The 18-kDa translocator protein (TSPO) is a key mitochondrial target by which different TSPO ligands exert neuroprotective effects. We assayed the neurogenic potential of TSPO to induce the neuronal differentiation of pluripotent P19 stem cells in vitro. We studied changes in cell morphology, cell proliferation, cell death, the cell cycle, mitochondrial functionality, and the levels of pluripotency and neurogenesis of P19 stem cells treated with the TSPO ligand, PK 11195, in comparison to differentiation induced by retinoid acid (RA) and undifferentiated P19 stem cells. We observed that PK 11195 was able to activate the differentiation of P19 stem cells by promoting the development of embryoid bodies. PK 11195 also induced changes in the cell cycle, decreased cell proliferation, and activated cell death. Mitochondrial metabolism was also enhanced by PK 11195, thus increasing the levels of reactive oxygen species, Ca2+, and ATP as well as the mitochondrial membrane potential. Markers of pluripotency and neurogenesis were also altered during the cell differentiation process, as PK 11195 induced the differentiation of P19 stem cells with a high predisposition toward a neuronal linage, compared to cell differentiation induced by RA. Thus, we suggest a relevant neurogenic potential of TSPO along with broad therapeutic implications.
Collapse
|
25
|
Cozene B, Sadanandan N, Farooq J, Kingsbury C, Park YJ, Wang ZJ, Moscatello A, Saft M, Cho J, Gonzales-Portillo B, Borlongan CV. Mesenchymal Stem Cell-Induced Anti-Neuroinflammation Against Traumatic Brain Injury. Cell Transplant 2021; 30:9636897211035715. [PMID: 34559583 PMCID: PMC8485159 DOI: 10.1177/09636897211035715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a pervasive and damaging form of acquired brain injury (ABI). Acute, subacute, and chronic cell death processes, as a result of TBI, contribute to the disease progression and exacerbate outcomes. Extended neuroinflammation can worsen secondary degradation of brain function and structure. Mesenchymal stem cell transplantation has surfaced as a viable approach as a TBI therapeutic due to its immunomodulatory and regenerative features. This article examines the role of inflammation and cell death in ABI as well as the effectiveness of bone marrow-derived mesenchymal stem/stromal cell (BM-MSC) transplants as a treatment for TBI. Furthermore, we analyze new studies featuring transplanted BM-MSCs as a neurorestorative and anti-inflammatory therapy for TBI patients. Although clinical trials support BM-MSC transplants as a viable TBI treatment due to their promising regenerative characteristics, further investigation is imperative to uncover innovative brain repair pathways associated with cell-based therapy as stand-alone or as combination treatments.
Collapse
Affiliation(s)
| | | | - Jeffrey Farooq
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
26
|
Bonilla C, Zurita M. Cell-Based Therapies for Traumatic Brain Injury: Therapeutic Treatments and Clinical Trials. Biomedicines 2021; 9:biomedicines9060669. [PMID: 34200905 PMCID: PMC8230536 DOI: 10.3390/biomedicines9060669] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) represents physical damage to the brain tissue that induces transitory or permanent neurological disabilities. TBI contributes to 50% of all trauma deaths, with many enduring long-term consequences and significant medical and rehabilitation costs. There is currently no therapy to reverse the effects associated with TBI. An increasing amount of research has been undertaken regarding the use of different stem cells (SCs) to treat the consequences of brain damage. Neural stem cells (NSCs) (adult and embryonic) and mesenchymal stromal cells (MSCs) have shown efficacy in pre-clinical models of TBI and in their introduction to clinical research. The purpose of this review is to provide an overview of TBI and the state of clinical trials aimed at evaluating the use of stem cell-based therapies in TBI. The primary aim of these studies is to investigate the safety and efficacy of the use of SCs to treat this disease. Although an increasing number of studies are being carried out, few results are currently available. In addition, we present our research regarding the use of cell therapy in TBI. There is still a significant lack of understanding regarding the cell therapy mechanisms for the treatment of TBI. Thus, future studies are needed to evaluate the feasibility of the transplantation of SCs in TBI.
Collapse
Affiliation(s)
- Celia Bonilla
- Cell Therapy Unit, Puerta de Hierro Hospital, 28222 Majadahonda, Madrid, Spain
- Correspondence: ; Tel.: +34-91-191-7879
| | - Mercedes Zurita
- Cell Therapy Unit Responsable, Puerta de Hierro Hospital, 28222 Majadahonda, Madrid, Spain;
| |
Collapse
|
27
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 2021; 22:249-262. [PMID: 33231840 DOI: 10.1007/s10561-020-09885-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70-80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Departments of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
28
|
Bjorklund GR, Anderson TR, Stabenfeldt SE. Recent Advances in Stem Cell Therapies to Address Neuroinflammation, Stem Cell Survival, and the Need for Rehabilitative Therapies to Treat Traumatic Brain Injuries. Int J Mol Sci 2021; 22:ijms22041978. [PMID: 33671305 PMCID: PMC7922668 DOI: 10.3390/ijms22041978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injuries (TBIs) are a significant health problem both in the United States and worldwide with over 27 million cases being reported globally every year. TBIs can vary significantly from a mild TBI with short-term symptoms to a moderate or severe TBI that can result in long-term or life-long detrimental effects. In the case of a moderate to severe TBI, the primary injury causes immediate damage to structural tissue and cellular components. This may be followed by secondary injuries that can be the cause of chronic and debilitating neurodegenerative effects. At present, there are no standard treatments that effectively target the primary or secondary TBI injuries themselves. Current treatment strategies often focus on addressing post-injury symptoms, including the trauma itself as well as the development of cognitive, behavioral, and psychiatric impairment. Additional therapies such as pharmacological, stem cell, and rehabilitative have in some cases shown little to no improvement on their own, but when applied in combination have given encouraging results. In this review, we will abridge and discuss some of the most recent research advances in stem cell therapies, advanced engineered biomaterials used to support stem transplantation, and the role of rehabilitative therapies in TBI treatment. These research examples are intended to form a multi-tiered perspective for stem-cell therapies used to treat TBIs; stem cells and stem cell products to mitigate neuroinflammation and provide neuroprotective effects, biomaterials to support the survival, migration, and integration of transplanted stem cells, and finally rehabilitative therapies to support stem cell integration and compensatory and restorative plasticity.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Biological and Health Systems Engineering, Ira A, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Trent R. Anderson
- Basic Medical Sciences, College of Medicine–Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA;
- Correspondence:
| |
Collapse
|
29
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020; 14:594304. [PMID: 33281561 PMCID: PMC7689345 DOI: 10.3389/fncel.2020.594304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Wang ZM, Liu C, Wang YY, Deng YS, He XC, Du HZ, Liu CM, Teng ZQ. SerpinA3N deficiency deteriorates impairments of learning and memory in mice following hippocampal stab injury. Cell Death Discov 2020; 6:88. [PMID: 33014432 PMCID: PMC7501238 DOI: 10.1038/s41420-020-00325-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury is a global leading cause of disability and death, which puts patients at high risk for developing dementia. Early intervention is believed as the key to minimize the development of brain damages that could aggravate the symptoms. Here, we report that the serine protease inhibitor SerpinA3N is upregulated in hippocampal neurons in the early stage of hippocampal stab injury (HSI), while its deficiency causes a greater degree of neuronal apoptosis and severer impairments of spatial learning and memory in mice after HSI. We further show that MMP2 is a key substrate of SerpinA3N, and MMP2 specific inhibitor (ARP100) can protect against neuronal apoptosis and cognitive dysfunction in mice after HSI. These findings demonstrate a critical role for SerpinA3N in neuroprotection, suggesting that SerpinA3N and MMP2 inhibitors might be a novel therapeutic agents for neurotrauma.
Collapse
Affiliation(s)
- Zhi-Meng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100408 Beijing, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100408 Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100408 Beijing, China
| | - Yu-Sen Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100408 Beijing, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100408 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100408 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|