1
|
Manzoor N, Samad N, Khaliq S, Bin Khatab Abbasi B, Ahmad S, Irfan A, Raish M, Bin Jardan YA. Acipimox mitigates depression like behavior following high fat rich diet in rats. Brain Res Bull 2025; 225:111342. [PMID: 40216031 DOI: 10.1016/j.brainresbull.2025.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/19/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Acipimox (ACPX), a niacin derivative, has demonstrated antioxidant activity In vitro and In vivo; however, it has not been widely used in treating neurological problems. The present study examined the effects of Acipimox on body weight, dietary intake, depressive symptoms, oxide-neuroinflammation, 5-HT metabolism, and 5-HT1A receptor expression in hypothalamus of rats. Forty eight (n = 8) male albino rats were randomly divided into six groups (i) Vehicle (Veh)+ normal diet (ND) (ii) ND + ACPX (25 mg/mL/kg; low dose) (iii) ND+ ACPX (50 mg/mL/kg; high dose) (iv) Veh +High fat rich diet (HFRD) (v) HFRD+ACPX (25 mg/mL/kg; low dose (vi) HFRD+ACPX (50 mg/mL/kg; high dose). Animals were given their respective treatment for 8 weeks. After that, behavioral tests i.e. tail suspension test (TST) and forced swim test (FST) performed for depression-like behavior assessment. Animals were decapitated and the hypothalamus was isolated from the brain for biochemical and neurochemical analysis. Results showed that, HFRD induced depression like behavior and increased body weight and food intake was prevented by repeated administration of ACPX (both doses). HFRD induced increased oxido-neuroinflammation, altered serotonin metabolism and serotonin-1A receptor relative expression in the hypothalamus were regulated by ACPX (both doses). In conclusion, HFRD-induced behavioral deficits (depression like behavior) mitigated by ACPX through its antioxidant, anti-inflammatory, and neuromodulatory properties. It is recommended that use of ACPX could be helpful for HFRD-induced behavioral impairment i.e. depression.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saima Khaliq
- Department of Biochemistry, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Bakar Bin Khatab Abbasi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Manzoor N, Samad N, Bhatti SA, Irfan A, Ahmad S, Shazly GA, Bin Jardan YA. Neuroprotective effect of niacin in a rat model of obesity induced by high-fat-rich diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03687-3. [PMID: 39680102 DOI: 10.1007/s00210-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the impact of a high-fat-rich diet (HFRD) on behavioral, biochemical, neurochemical, and histopathological studies using the hypothalamus of rats following niacin (NCN) administration. The rats were divided into HFRD and normal diet (ND)-fed groups and administered selected doses of NCN, i.e., 25 mg/mL/kg (low dose) and 50 mg/mL/kg (high dose), for 8 weeks. The grouping of male rats (n = 8) was as follows: (i) Vehicle (Veh) + ND; (ii) ND + NCN (low dose); (iii) ND + NCN (high dose); (iv) Veh + HFRD; (v) HFRD + NCN (low dose); and (vi) HFRD + NCN (high dose). Behavioral tests assessed depression-like symptoms and spatial memory; after that, the hypothalamus was isolated for various analyses of sacrificed animals. NCN at both doses decreased food intake and growth rate in both diet groups and demonstrated antidepressant and memory-enhancing effects. HFRD-induced oxido-neuroinflammation decreased with both doses of NCN. HFRD-induced decreases in serotonergic neurotransmission, 5-HT1A receptor expression, and morphological alterations in the rat's hypothalamus were normalized by both doses of NCN. In conclusion, NCN, as a potential antioxidant and neuromodulator, can normalize feeding behavior and produce antidepressant and memory-improving effects in a rat model of obesity following HFRD intake.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sadaf Ahmad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Samad N, Hameed A, Manzoor N, Shoukat S, Irfan A, Shazly GA, Khalid A, Ejaz U, Khaliq S, Mateev E, Bin Jardan YA. Antioxidant and neuro-modulatory effects of niacin prevent D-galactose-induced behavioral deficits and memory impairment. Exp Gerontol 2024; 198:112624. [PMID: 39490558 DOI: 10.1016/j.exger.2024.112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Aging is an invincible phenomenon that is a risk factor for the development of neurological disorders such as anxiety, depression, and memory decline that are prominent in aging. The present study aims to evaluate the effect of Niacin (Nn) on D-galactose (D-Gal)-induced behavioral deficits and memory impairment in rats. In the experiment, forty-eight male albino Sprague dwaley rats were divided on a random basis into six groups (n = 8): Veh + Veh, Veh + Nn (low dose), Veh + Nn (high dose), Veh + D-Gal, D-Gal+Nn (low dose), D-Gal+Nn (high dose). 300 mg/kg/mL drug doses of D-Gal, while low doses (25 mg/kg/mL) and high doses (50 mg/kg/mL) of Nn were used in this study. Animals received their respective treatment for 14 days (intraperitoneally, once daily). After 14 days, animals were subjected to different behavioral tests including light-dark box activity, elevated plus maze test (for anxiety), and tail suspension test (for depression). A Morris water maze test was performed to evaluate short-term and long-term memory performance. After behavioral tests, decapitation was performed and brains were collected and stored for biochemical and neurochemical analysis. Behavioral analysis revealed that Nn alleviated the anxiety and depression-like symptoms and memory decline induced by D-Gal. D-Gal-induced decreased antioxidant enzymes, and acetylcholine levels, while increased oxidative stress markers, neuro-inflammatory cytokines, serotonin metabolism, and acetylcholinesterase (AChE) activity were prevented by Nn administration at both doses. In-silico studies showed that Nn has a potential to inhibit AChE activity with a binding affinity of -5.0 kcal/mol. In conclusion, Nn as an antioxidant and neuromodulator could be helpful for treating aging and associated psychiatric illnesses.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Aqsa Hameed
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Sadia Shoukat
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Arslan Khalid
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Umer Ejaz
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, 75270 Karachi, Pakistan.
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Samad N, Manzoor N, Batool A, Noor A, Khaliq S, Aurangzeb S, Bhatti SA, Imran I. Protective effects of niacin following high fat rich diet: an in-vivo and in-silico study. Sci Rep 2023; 13:21343. [PMID: 38049514 PMCID: PMC10696033 DOI: 10.1038/s41598-023-48566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
Niacin had long been understood as an antioxidant. There were reports that high fat diet (HFD) may cause psychological and physical impairments. The present study was aimed to experience the effect of Niacin on % growth rate, cumulative food intake, motor activity and anxiety profile, redox status, 5-HT metabolism and brain histopathology in rats. Rats were administered with Niacin at a dose of 50 mg/ml/kg body weight for 4 weeks following normal diet (ND) and HFD. Behavioral tests were performed after 4 weeks. Animals were sacrificed to collect brain samples. Biochemical, neurochemical and histopathological studies were performed. HFD increased food intake and body weight. The exploratory activity was reduced and anxiety like behavior was observed in HFD treated animals. Activity of antioxidant enzymes was decreased while oxidative stress marker and serotonin metabolism in the brain of rat were increased in HFD treated animals than ND fed rats. Morphology of the brain was also altered by HFD administration. Conversely, Niacin treated animals decreased food intake and % growth rate, increased exploratory activity, produced anxiolytic effects, decreased oxidative stress and increased antioxidant enzyme and 5-HT levels following HFD. Morphology of brain is also normalized by the treatment of Niacin following HFD. In-silico studies showed that Niacin has a potential binding affinity with degradative enzyme of 5-HT i.e. monoamine oxidase (MAO) A and B with an energy of ~ - 4.5 and - 5.0 kcal/mol respectively. In conclusion, the present study showed that Niacin enhanced motor activity, produced anxiolytic effect, and reduced oxidative stress, appetite, growth rate, increased antioxidant enzymes and normalized serotonin system and brain morphology following HFD intake. In-silico studies suggested that increase 5-HT was associated with the binding of MAO with Niacin subsequentially an inhibition of the degradation of monoamine. It is suggested that Niacin has a great antioxidant potential and could be a good therapy for the treatment of HFD induced obesity.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ammara Batool
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Aqsa Noor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Faculty of Science, Science and Technology, Federal Urdu University of Arts, Karachi, 75270, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
5
|
Samad N, Azdee MAH, Imran I, Ahmad T, Alqahtani F. Mitigation of behavioral deficits and cognitive impairment by antioxidant and neuromodulatory potential of Mukia madrespatana in D-galactose treated rats. Saudi J Biol Sci 2023; 30:103708. [PMID: 37415861 PMCID: PMC10320603 DOI: 10.1016/j.sjbs.2023.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Plants and their parts have been extensively used for the therapeutic purposes such as aging due to their powerful antioxidative belongings. Presently, we intended to examine the consequence of fruit peel of Mukia madrespatana (M.M) on D-galactose (D-Gal) persuaded anxiety and/or depression profile, cognition and serotonin metabolism in rats. Animals were divided in to 4 groups (n = 6). (i) Water treated (ii) D-Gal treated (iii) M.M. treated (iv) D-Gal + M.M. treated. All the animals received their respective treatment for 4 weeks. D-Gal and M.M. fruit peel were given to animals with oral gavage with doses 300 mg/ml/kg/day and 2 g/kg/day respectively. After 4 weeks' behavioral analysis performed to evaluate anxiety and depression profile, cognitive function of animals. After that animals were sacrificed and whole brain removed for biochemical (redox status, degradative enzyme of acetylcholine), and neurochemical (serotonin metabolism) analysis. Results showed that administration of M.M. inhibited D-Gal-instigated anxious and depressive behaviors and improved cognition. Treatment of M.M. decreased MDA levels, AChE activity and increased antioxidant enzyme activity in D-Gal administered and control rats. Enhanced serotonin metabolism also decreased by M.M. in control and D-Gal administered rats. In conclusion, M.M. fruit peel has powerful antioxidative and neuromodulatory properties and due to this effect, it may be a good source of mitigation/treatment for aging induced behavioral and cognitive impairment.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | | | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Tanveer Ahmad
- Institut Pour I, Avancee des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Universite Grenoble Alpes, France
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Samad N, Rafeeque M, Imran I. Free-L-Cysteine improves corticosterone-induced behavioral deficits, oxidative stress and neurotransmission in rats. Metab Brain Dis 2022; 38:983-997. [PMID: 36507936 DOI: 10.1007/s11011-022-01143-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
L-Cysteine (L-Cys) is a semi-essential amino acid. It serves as a substrate for enzyme cystathionine-β-synthase in the central nervous system (CNS). L-Cys showed various antioxidant characteristics. Though, studies on the effect of free L-Cys administration to evaluate the CNS functioning is very limited. Therefore, we assessed the effects of L-Cys on corticosterone (CORT) induced oxidative stress, behavioral deficits and memory impairment in male rats. L-Cys (150 mg/kg/ml) administered to vehicle and CORT (20 mg/kg/ml) treated rats orally for 28 days. Behavioral activities were conducted after treatment period. Subsequently, rats were sacrificed, blood and brain were removed. Hippocampus was isolated from brain and then hippocampus and plasma were collected for oxidative, biochemical and neurochemical analysis. Results showed that repeated treatment of L-Cys produced antidepressant, anxiolytic and memory-improving effects which may be ascribed to the enhanced antioxidant profile, normalized cholinergic, serotonergic neurotransmission in brain (hippocampus) following CORT administration. Increased plasma CORT by CORT administration was also normalized by L-Cys. The current study concluded that administration of free L-Cys improved the behavioral, biochemical, neurochemical and redox status of CNS. Hence, L-Cys could be protective therapeutic modulator against stress induced neurological ailments.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Mikhba Rafeeque
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
7
|
Samad N, Nasir A, Rehman MHU, Bhatti SA, Imran I. Adenosine protects D-galactose induced alterations in rat model of aging via attenuating neurochemical profile and redox status. Metab Brain Dis 2022; 37:2483-2496. [PMID: 35870061 DOI: 10.1007/s11011-022-01049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
Aging is the process that every organism faces. The aging model of brain has been developed by the use of d-galactose (d-Gal). Adenosine (Ad) being a neuroprotective agent that has been utilized in treatment of various neurological disorders. The aim of current study is to evaluate the outcome of Ad on d-Gal induced neurotoxicity which caused behavioral deficits, memory impairment and oxidative stress. Rats were treated with d-Gal at a dose of 300 mg/ml/kg and Ad 1 mg/ml/kg; intraperitoneally for 28 days. Behavioral assessment was performed after the treatment period. Animals were sacrificed after behavioral tests and their brains were collected, hippocampus were removed for biochemical and neurochemical analysis. The results showed that administration of Ad ameliorates the negative effects of d-Gal induced aging in various behavioral tests and increased the time spent in the open arm and light box in elevated plus maze (EPM) and light dark activity (LDA) tests respectively indicate anxiolytic effect; increased the mobility time in tail suspension test (TST) shows antidepressant effect; decreased escape latencies in Morris water maze (MWM) acquisition trials, increase entries and time spent in the target quadrant suggests improvement in learning ability of animals. Administration of Ad also decreased malondialdehyde (MDA) levels, increased antioxidant enzymes activity; decreased acetylcholinesterase (AChE) activity, increased 5-hydroxytryptamine (5-HT, serotonin) metabolism and normalized histopathological alteration in the hippocampus. It is concluded that anxiety, depression and memory impairment induced by d-Gal were protected by Ad through its antioxidant and neuro-modulatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Arooj Nasir
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
8
|
Samad N, Rao T, Rehman MHU, Bhatti SA, Imran I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol Trace Elem Res 2022; 200:689-698. [PMID: 33745108 DOI: 10.1007/s12011-021-02679-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Elevated arsenic (As) contamination in drinking water was detected in many areas of Pakistan. The intoxication of As causes various neurological diseases in humans, which can be inhibited by the administration of potent antioxidants. Trace elements are also found in drinking water such as selenium (Se), which possess antioxidant potential. The main purpose of the current study is to find out the protective effect of Se against As toxicity which can cause anxiety- and depression-like behaviors as well as memory impairment. Thirty-six male rats were divided into six groups: (1) distilled water (dw)+dw, (2) dw+Se (0.175 mg/ml/kg), (3) dw+Se (0.35mg/ml/kg), (4) dw+As (2.5mg/ml/kg), (5) As (2.5mg/ml/kg) + Se (0.175 mg/ml/kg), and (6) As (2.5mg/ml/kg) + Se (0.35 mg/ml/kg). Rats were treated with respective treatment for 4 weeks. Sub-chronic treatment of As reduced time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and increased immobility time in forced swim test indicate anxiety- and/or depression-like behavior, respectively. Conversely, rats treated with As+Se (at both doses) increased time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and decreased immobility time in forced swim test indicate the anxiolytic and anti-depressive effect of Se, respectively. Co-administration of Se (0.175 and 0.35) inhibited As instigated reduction of spatial memory performed in Morris water maze. The reversal in the reduced level of malondialdehyde and activity of acetylcholinesterase in the hippocampus by Se was observed in As-treated animals, while the activity of antioxidant enzymes in the hippocampus was increased in As+Se than dw+As-treated animals. Histopathological studies have shown the reversal of hippocampus deterioration by Se in As-treated rats. The results may imply to prevent the intoxication of As instigated impairment in behavioral and biochemical indices by Se supplementation and/or increased safer intake.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tazeen Rao
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
9
|
Samad N, Imran A, Bhatti SA, Imran I, Alqahtani F, Alasmari AF, Sivandzade F. Vitamin D2 protects acute and repeated noise stress induced behavioral, biochemical, and histopathological alterations: Possible antioxidant effect. Saudi J Biol Sci 2022; 29:601-609. [PMID: 35002456 PMCID: PMC8716964 DOI: 10.1016/j.sjbs.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Noise is an environmental stressor which causes distress and hearing loss in individuals residing in urban areas. Psychological deficits such as anxiety, depression, impaired memory and cognitive decline are caused by noise stress. Different vitamins have been used as a potential antioxidant for neuronal protection. In this study we investigate the anxiolytic, antidepressant and memory enhancing effect of vitamin D2 (Vit D2) following noise stress. Thirty-six albino rats were randomly divided into six groups. (i) Unstressed + corn oil (ii) Unstressed + Vit D2 (iii) Acute noise stress + corn oil (iv) Acute noise stress + Vit D2 (v) Repeated noise stress + corn oil (vi) Repeated noise stress + Vit D2. 600 IU/kg body weight of Vit D2 dosage was prepared in corn oil. Corn oil is used as vehicle and all the drugs administered via oral gavage till end of the experiment (day 16). Recorded sound of generator which was amplified by speakers and had 100 dB intensity was used as noise stress. Repeated stressed animals were exposed to noise (4-hrs) daily for 14 days, while acute stressed animals were exposed to noise (4-hrs) once after 14 days. Behavioral tests (elevated plus maze, light dark box, tail suspension test and Morris water maze) of all groups were performed after15 days treatment period. After behavioral tests rats received their last dosage and decapitated after 1-hr. Brain of all animals was removed and used for biochemical (oxidative stress biomarker, antioxidant enzymes and acetylcholinesterase) and histopathological estimations. Results show that Vit D2 decreased time spent in light box and open arm of light dark activity box and elevated plus maze test respectively (used for anxiety evaluation), decreased immobility time in tail suspension test (for depression) and improved cognitive ability evaluated by Morris water maze test in acute and repeated noise stressed rats. Furthermore, increased antioxidant enzymes activity, decreased lipid peroxidation and acetylcholinesterase activity were also observed in Vit D2 treated animals following acute and repeated noise stress. Normalization in histopathological studies was also observed in Vit D2 treated following acute and repeated noise stress. It is concluded that Vit D2 protects from noise stress induced behavioral, biochemical and histopathological impairment through its antioxidant potential.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Ayesha Imran
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
10
|
Ali FF, Mohammed HH, Elroby Ali DM. Protective effect of hydrogen sulfide against stress-induced lung injury: involvement of Nrf2, NFκB/iNOS, and HIF-1α signaling pathways. Cell Stress Chaperones 2022; 27:55-70. [PMID: 34881408 PMCID: PMC8821758 DOI: 10.1007/s12192-021-01248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)-induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase-3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress-induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
11
|
Samad N, Ali A, Yasmin F, Ullah R, Bari A. Correction: Samad, N., et al. Behavioral and Biochemical Effects of Mukia madrespatana Following Single Immobilization Stress in Rats. Medicina 2020, 56, 350. Medicina (B Aires) 2020; 56:medicina56080391. [PMID: 32764420 PMCID: PMC7466363 DOI: 10.3390/medicina56080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Correspondence:
| | - Amna Ali
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Farzana Yasmin
- Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan;
- Department of Food Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Ahmed Bari
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|