1
|
Yao H, Liu Y, Wang Y, Xue Y, Jiang S, Sun X, Ji M, Xu Z, Ding J, Hu G, Lu M. Dural Tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons. Cell Death Differ 2024:10.1038/s41418-024-01421-3. [PMID: 39592709 DOI: 10.1038/s41418-024-01421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The dura sinus-resident immune cells can influence the process of central neural system (CNS) diseases by communicating with central nerve cells. In clinical, Tregs are also frequently impaired in depression. However, the significance of this relationship remains unknown. In the present study, we found a significant increase in dural Treg populations in mouse models of depression, whereas depleting them by neutralizing antibodies injection could exacerbate depressive phenotypes. Through RNA sequencing, we identified that the antidepressant effects of dural Tregs are at least in part through the production of amphiregulin, increasing the expression of its receptor EGFR in medial prefrontal cortex (mPFC) pyramidal neurons. Furthermore, dural Tregs expressed high levels of ST2, and their expansion in depressed mice depended on astrocyte-derived IL33 secretion. Our study shows that dural Treg signaling can be enhanced by treatment with fluoxetine, highlighting that dural Tregs can be utilized as a potential target cell in major depressive disorder (MDD).
Collapse
Affiliation(s)
- Hang Yao
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
- The Second People's Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueping Wang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - You Xue
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Jiang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming Lu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
- The Second People's Hospital of Changzhou, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Ferrucci L, Cantando I, Cordella F, Di Angelantonio S, Ragozzino D, Bezzi P. Microglia at the Tripartite Synapse during Postnatal Development: Implications for Autism Spectrum Disorders and Schizophrenia. Cells 2023; 12:2827. [PMID: 38132147 PMCID: PMC10742295 DOI: 10.3390/cells12242827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Laura Ferrucci
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
| | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| |
Collapse
|
3
|
Tan YJ, Siow I, Saffari SE, Ting SKS, Li Z, Kandiah N, Tan LCS, Tan EK, Ng ASL. Plasma Soluble ST2 Levels Are Higher in Neurodegenerative Disorders and Associated with Poorer Cognition. J Alzheimers Dis 2023; 92:573-580. [PMID: 36776067 DOI: 10.3233/jad-221072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Suppressor of tumorgenicity 2 (ST2) is highly expressed in brain tissue and is a receptor for interleukin 33 (IL-33). ST2 exists in two forms, a transmembrane receptor (ST2L) and a soluble decoy receptor (sST2). IL-33 binds to ST2L, triggering downstream signaling pathways involved in amyloid plaque clearance. Conversely, sST2 binds competitively to IL-33, attenuating its neuroprotective effects. High sST2 levels have been reported in mild cognitive impairment (MCI) and Alzheimer's disease (AD), suggesting that the IL-33/ST2 signaling pathway may be implicated in neurodegenerative diseases. OBJECTIVE To investigate plasma sST2 levels in controls and patients with MCI, AD, frontotemporal dementia (FTD), and Parkinson's disease (PD). METHODS Plasma sST2 levels were measured using ELISA in 397 subjects (91 HC, 46 MCI, 38 AD, 28 FTD, and 194 PD). Cerebrospinal fluid (CSF) levels of sST2 were measured in 22 subjects. Relationship between sST2 and clinical outcomes were analyzed. RESULTS Plasma sST2 levels were increased across all disease groups compared to controls, with highest levels seen in FTD followed by AD and PD. Dementia patients with higher sST2 had lower cross-sectional cognitive scores in Frontal Assessment Battery and Digit Span Backward. At baseline, PD-MCI patients had higher sST2, associated with worse attention. In the longitudinal PD cohort, higher sST2 significantly associated with decline in global cognition and visuospatial domains. Plasma sST2 levels correlated with CSF sST2 levels. CONCLUSION Plasma sST2 is raised across neurodegenerative diseases and is associated with poorer cognition. Higher baseline sST2 is a potential biomarker of disease severity in neurodegeneration.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Isabel Siow
- Ministry of Health Holdings, Singapore, Singapore
| | - Seyed Ehsan Saffari
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Simon K S Ting
- Department of Neurology, Singapore General Hospital, Singapore
| | - Zeng Li
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Eng King Tan
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Shnayder NA, Khasanova AK, Strelnik AI, Al-Zamil M, Otmakhov AP, Neznanov NG, Shipulin GA, Petrova MM, Garganeeva NP, Nasyrova RF. Cytokine Imbalance as a Biomarker of Treatment-Resistant Schizophrenia. Int J Mol Sci 2022; 23:ijms231911324. [PMID: 36232626 PMCID: PMC9570417 DOI: 10.3390/ijms231911324] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is an important and unresolved problem in biological and clinical psychiatry. Approximately 30% of cases of schizophrenia (Sch) are TRS, which may be due to the fact that some patients with TRS may suffer from pathogenetically “non-dopamine” Sch, in the development of which neuroinflammation is supposed to play an important role. The purpose of this narrative review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines during the development of therapeutic resistance to APs and their pathogenetic and prognostic significance of cytokine imbalance as TRS biomarkers. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to maintaining or changing the cytokine balance can become a new key in unlocking the mystery of “non-dopamine” Sch and developing new therapeutic strategies for the treatment of TRS and psychosis in the setting of acute and chronic neuroinflammation. In addition, the inconsistency of the results of previous studies on the role of pro-inflammatory and anti-inflammatory cytokines indicates that the TRS biomarker, most likely, is not the serum level of one or more cytokines, but the cytokine balance. We have confirmed the hypothesis that cytokine imbalance is one of the most important TRS biomarkers. This hypothesis is partially supported by the variable response to immunomodulators in patients with TRS, which were prescribed without taking into account the cytokine balance of the relation between serum levels of the most important pro-inflammatory and anti-inflammatory cytokines for TRS.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| | - Aiperi K. Khasanova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Anna I. Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Department of Psychiatry, Narcology and Psychotherapy, Samara State Medical University, 443016 Samara, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey P. Otmakhov
- Basic Department of Psychological and Social Support, St. Petersburg State Institute of Psychology and Social Work, 199178 Saint Petersburg, Russia
- St. Nikolay Psychiatric Hospital, 190121 Saint Petersburg, Russia
| | - Nikolay G. Neznanov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| |
Collapse
|
5
|
Tatu AL, Nadasdy T, Arbune A, Chioncel V, Bobeica C, Niculet E, Iancu AV, Dumitru C, Popa VT, Kluger N, Clatici VG, Vasile CI, Onisor C, Nechifor A. Interrelationship and Sequencing of Interleukins4, 13, 31, and 33 - An Integrated Systematic Review: Dermatological and Multidisciplinary Perspectives. J Inflamm Res 2022; 15:5163-5184. [PMID: 36110506 PMCID: PMC9468867 DOI: 10.2147/jir.s374060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
The interrelations and sequencing of interleukins are complex (inter)actions where each interleukin can stimulate the secretion of its preceding interleukin. In this paper, we attempt to summarize the currently known roles of IL-4, IL-13, IL-31, and IL-33 from a multi-disciplinary perspective. In order to conduct a comprehensive review of the current literature, a search was conducted using PubMed, Google Scholar, Medscape, UpToDate, and Key Elsevier for keywords. The results were compiled from case reports, case series, letters, and literature review papers, and analyzed by a panel of multi-disciplinary specialist physicians for relevance. Based on 173 results, we compiled the following review of interleukin signaling and its clinical significance across a multitude of medical specialties. Interleukins are at the bed rock of a multitude of pathologies across different organ systems and understanding their role will likely lead to novel treatments and better outcomes for our patients. New interleukins are being described, and the role of this inflammatory cascade is still coming to light. We hope this multi-discipline review on the role interleukins play in current pathology assists in this scope.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania.,Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Thomas Nadasdy
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Municipal Emergency Hospital, Timişoara, Romania
| | - Anca Arbune
- Neurology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Valentin Chioncel
- Neurology Department, "Bagdasar-Arseni" Emergency Clinical Hospital, Bucharest, Romania
| | - Carmen Bobeica
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena Niculet
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Caterina Dumitru
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Valentin Tudor Popa
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Center for the Morphologic Study of the Skin MORPHODERM, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.,Apolo Medical Center, Bucharest, Romania
| | | | - Claudiu Ionut Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Cristian Onisor
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| |
Collapse
|
6
|
Muhammad JS, Siddiqui R, Khan NA. COVID-19 and alcohol use disorder: putative differential gene expression patterns that might be associated with neurological complications. Hosp Pract (1995) 2022; 50:189-195. [PMID: 35686663 DOI: 10.1080/21548331.2022.2088183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Several lines of evidence suggest that SARS-CoV-2 invasion of the central nervous system leads to meningitis and encephalopathy syndromes. Additionally, chronic alcoholics were found to be at a higher risk of developing mental health problems and serious neurological manifestations, if exposed to SARS-CoV-2 infection. METHODS Herein, we studied RNA seq data from alcoholics' brain tissue and COVID-19 patient's brain tissue to identify the common differentially expressed genes. RESULTS Overlap analysis depicted the expression of seven genes (GHRL, SLN, VGF, IL1RL1, NPTX2, PDYN, and RPRML) that were significantly upregulated in both groups. Along with these, protein-protein interaction analysis revealed 10 other key molecules with strong interactions with the aforementioned genes. CONCLUSIONS Taken together with the functional effect of these genes, we suggest a strong molecular link between COVID-19-induced severities and neurological impairment in patients suffering from alcohol abuse disorder. These findings emphasize the importance of identifying chronic alcoholism as a risk factor for developing cognitive and memory impairment in COVID-19 patients.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
Ma H, Cheng N, Zhang C. Schizophrenia and Alarmins. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060694. [PMID: 35743957 PMCID: PMC9230958 DOI: 10.3390/medicina58060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Schizophrenia, consisting of a group of severe psychiatric disorders with a complex etiology, is a leading cause of disability globally. Due to the lack of objective indicators, accurate diagnosis and selection of effective treatments for schizophrenia remain challenging. The association between schizophrenia and alarmins levels has been proposed for many years, but without solid evidence. Alarmins are prestored molecules that do not require processing and can be released upon cell death or damage, making them an ideal candidate for an early initiator of inflammation. Immunological biomarkers seem to be related to disease progression and treatment effectiveness. Several studies suggest strong associations among the high-mobility group box 1 protein (HMGB1), interleukin-1α, interleukin-33, S100B, heat-shock proteins, and uric acid with schizophrenic disorders. The purpose of this review is to discuss the evidence of central and peripheral immune findings in schizophrenia, their potential causes, and the effects of immunomodulatory therapies on symptoms and outline potential applications of these markers in managing the illness. Although there are currently no effective markers for diagnosing or predicting treatment effects in patients with schizophrenia, we believe that screening immune-inflammatory biomarkers that are closely related to the pathological mechanism of schizophrenia can be used for early clinical identification, diagnosis, and treatment of schizophrenia, which may lead to more effective treatment options for people with schizophrenia.
Collapse
Affiliation(s)
- Huan Ma
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Ning Cheng
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Caiyi Zhang
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou 221000, China
- Correspondence: ; Tel.: +86-137-7588-9105
| |
Collapse
|
8
|
Cao LH, He HJ, Zhao YY, Wang ZZ, Jia XY, Srivastava K, Miao MS, Li XM. Food Allergy-Induced Autism-Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. J Asthma Allergy 2022; 15:645-664. [PMID: 35603013 PMCID: PMC9122063 DOI: 10.2147/jaa.s348609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Food allergy-induced autism-like behavior has been increasing for decades, but the causal drivers of this association are unclear. We sought to test the association of gut microbiota and mammalian/mechanistic target of rapamycin (mTOR) signaling with cow’s milk allergy (CMA)-induced autism pathogenesis. Methods Mice were sensitized intragastrically with whey protein containing cholera toxin before sensitization on intraperitoneal injection with whey-containing alum, followed by intragastric allergen challenge to induce experimental CMA. The food allergic immune responses, ASD-like behavioral tests and changes in the mTOR signaling pathway and gut microbial community structure were performed. Results CMA mice showed autism-like behavioral abnormalities and several distinct biomarkers. These include increased levels of 5-hydroxymethylcytosine (5-hmC) in the hypothalamus; c-Fos were predominantly located in the region of the lateral orbital prefrontal cortex (PFC), but not ventral; decreased serotonin 1A in amygdala and PFC. CMA mice exhibited a specific microbiota signature characterized by coordinate changes in the abundance of taxa of several bacterial genera, including the Lactobacillus. Interestingly, the changes were accompanied by promoted mTOR signaling in the brain of CMA mice. Conclusion We found that disease-associated microbiota and mTOR activation may thus play a pathogenic role in the intestinal, immunological, and psychiatric Autism Spectrum Disorder (ASD)-like symptoms seen in CAM associated autism. However, this is only a preliminary study, and their mechanisms require further investigation.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- General Nutraceutical Technology, Elmsford, NY, 10523, USA
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
- Correspondence: Xiu-Min Li; Ming-San Miao, Tel +1 914-594-4197, Fax +1 371-65962546, Email ;
| |
Collapse
|
9
|
Koricanac A, Tomic Lucic A, Veselinovic M, Bazic Sretenovic D, Bucic G, Azanjac A, Radmanovic O, Matovic M, Stanojevic M, Jurisic Skevin A, Simovic Markovic B, Pantic J, Arsenijevic N, Radosavljevic GD, Nikolic M, Zornic N, Nesic J, Muric N, Radmanovic B. Influence of antipsychotics on metabolic syndrome risk in patients with schizophrenia. Front Psychiatry 2022; 13:925757. [PMID: 35958655 PMCID: PMC9357900 DOI: 10.3389/fpsyt.2022.925757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Many studies so far have shown that antipsychotic therapy may have an effect on the development of metabolic syndrome in patients diagnosed with schizophrenia. Our goal was to determine whether our respondents are at risk for developing metabolic syndrome and who is more predisposed to it. METHODS In a stable phase, 60 patients diagnosed with schizophrenia were equally divided into three groups according to the drug (risperidone, clozapine, and aripiprazole monotherapy). Control group had 20 healthy examinees. Patients were evaluated first using The Positive and Negative Syndrome Scale (PANSS). Prolactin, lipid status, glycemia, insulin, cytokine values (IL-33, TGF-β, and TNF-α) and C-reactive protein (CRP) were measured. Also, Body mass index (BMI), Homeostatic Model Assesment for Insulin Resistance (HOMA index), waist and hip circumference (WHR) and blood pressure (TA) measurement were performed in the study. RESULTS Patients treated with risperidone compared to healthy control subjects and aripiprazol group of patients had statistically significant difference in prolactin levels. In clozapine group compared to healthy control group values of HDL cholesterol and glucose level were statistically significant different. In aripiprazole group compared to healthy control group value of BMI was statistically significant different. Statistically significant correlations were found in TNF-α with glucose and HOMA index in risperidone treated patients and with BMI in clozapine group of patients; IL-33 with glucose in risperidone and with BMI in clozapine group of patients and TGF-β with glucose in risperidone group, with insulin and HOMA index in clozapine group and statistically significant negative correlation with LDL cholesterol in aripiprazole group of patients. CONCLUSION Patients on risperidone and clozapine therapy may be at greater risk of developing metabolic syndrome than patients treated with aripiprazole. Statistically significant difference in concentration of TNF-α and TGF-β was in the group of patients treated with risperidone compared to healthy control group.
Collapse
Affiliation(s)
- Aleksandra Koricanac
- Department of Internal Medicine, General Hospital Kraljevo, Kraljevo, Serbia.,Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Tomic Lucic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Mirjana Veselinovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Bazic Sretenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Gorica Bucic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Anja Azanjac
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Olivera Radmanovic
- Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Mirjana Matovic
- Department of Internal Medicine, General Hospital Kraljevo, Kraljevo, Serbia.,Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marijana Stanojevic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Laboratory Diagnostics, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Aleksandra Jurisic Skevin
- Department of Physical Medicine and Rehabilitation, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojša Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Zornic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department for Anesthesiology and Reanimation, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Jelena Nesic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Clinic for Endocrinology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Nemanja Muric
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Psychiatry Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Branimir Radmanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Psychiatry Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| |
Collapse
|
10
|
Borovcanin MM, Vesic K. Breast cancer in schizophrenia could be interleukin-33-mediated. World J Psychiatry 2021; 11:1065-1074. [PMID: 34888174 PMCID: PMC8613763 DOI: 10.5498/wjp.v11.i11.1065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological and genetic studies have revealed an interconnection between schizophrenia and breast cancer. The mutual underlying pathophysiological mechanisms may be immunologically driven. A new cluster of molecules called alarmins may be involved in sterile brain inflammation, and we have already reported the potential impact of interleukin-33 (IL-33) on positive symptoms onset and the role of its soluble trans-membranes full length receptor (sST2) on amelioration of negative symptoms in schizophrenia genesis. Furthermore, these molecules have already been shown to be involved in breast cancer etiopathogenesis. In this review article, we aim to describe the IL-33/suppressor of tumorigenicity 2 (ST2) axis as a crossroad in schizophrenia-breast cancer comorbidity. Considering that raloxifene could be tissue-specific and improve cognition and that tamoxifen resistance in breast carcinoma could be improved by strategies targeting IL-33, these selective estrogen receptor modulators could be useful in complementary treatment. These observations could guide further somatic, as well as psychiatric therapeutical protocols by incorporating what is known about immunity in schizophrenia.
Collapse
Affiliation(s)
- Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| | - Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| |
Collapse
|