1
|
Said NM, El-Shaer NH. Association of serum trefoil factor 3 and leptin levels with obesity: A case-control study. Cytokine 2024; 181:156690. [PMID: 38996578 DOI: 10.1016/j.cyto.2024.156690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Obesity has a detrimental impact on individuals, communities, and healthcare systems. Trefoil factor 3 is a secretory protein involved in metabolic processes related to weight regulation. However, its relation with obesity is not fully understood. OBJECTIVE We aimed to assess the serum trefoil factor 3 level and to immunohistochemical detect the leptin in obese patients to evaluate their relation to obesity pathogenesis. METHODS As a case-control study, we enrolled 83 non-obese persons as a control group with a BMI (18.5-24.9) and 83 obese persons as a patient group with a BMI > 30. All the study volunteers are subjected to anthropometric measurements, glucose, and lipid profile analysis by colorimetric methods. Serum trefoil factor 3 level was estimated by ELISA and leptin hormone was detected immunohistochemically in the blood using cell block technique. RESULTS ROC curve analysis for TFF3 showed a good relation with obesity with an AUC of 0.891 and a cut-off value of > 96 ng/ml. There was a significant positive correlation between TFF3 and fasting blood sugar, total cholesterol, and triglycerides. The logistic regression analysis showed that TFF3 is a good risk factor for obesity incidence [p = 0.008; OR = 1.117; (95 % CI): 1.029-1.213]. This was confirmed by multiple linear regression that gave an equation for the possibility of predicting BMI using several factors including TFF3 [BMI = 0.821 + 0.051 × TFF3 + 0.044 × FBS + 0.85 × TC]. The more surprising was the ability of the immunohistochemistry cell block technique to detect leptin antigens associated with an obese person blood not only adipose tissue or serum. CONCLUSION Leptin hormone and TFF3 could be good indicators for obesity incidence. Further research with a larger sample size and in different populations could completely approve our results.
Collapse
Affiliation(s)
- Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nahla H El-Shaer
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Nath D, Barbhuiya PA, Sen S, Pathak MP. A Review on in-vivo and in-vitro Models of Obesity and Obesity-Associated Co-Morbidities. Endocr Metab Immune Disord Drug Targets 2024; 25:EMIDDT-EPUB-142215. [PMID: 39136512 DOI: 10.2174/0118715303312932240801073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Obesity is becoming a global pandemic with pandemic proportions. According to the WHO estimates, there were over 1.9 billion overweight individuals and over 650 million obese adults in the globe in 2016. In recent years, scientists have encountered difficulties in choosing acceptable animal models, leading to a multitude of contradicting aspects and incorrect outcomes. This review comprehensively evaluates different screening models of obesity and obesity-associated comorbidities to reveal the advantages and disadvantages/limitations of each model while also mentioning the time duration each model requires to induce obesity. METHODOLOGY For this review, the authors have gone through a vast number of article sources from different scientific databases, such as Google Scholar, Web of Science, Medline, and PubMed. RESULTS In-vivo models used to represent a variety of obesity-inducing processes, such as diet-induced, drug-induced, surgical, chemical, stress-induced, and genetic models, are discussed. Animal cell models are examined with an emphasis on their use in understanding the molecular causes of obesity, for which we discussed in depth the important cell lines, including 3T3-L1, OP9, 3T3-F442A, and C3H10T1/2. Screening models of obesity-associated co-morbidities like diabetes, asthma, cardiovascular disorders, cancer, and polycystic ovarian syndrome (PCOS) were discussed, which provided light on the complex interactions between obesity and numerous health problems. CONCLUSION Mimicking obesity in an animal model reflects multifactorial aspects is a matter of challenge. Future studies could address the ethical issues surrounding the use of animals in obesity research as well as investigate newly developed models, such as non-mammalian models. In conclusion, improving our knowledge and management of obesity and related health problems will require ongoing assessment and improvement of study models.
Collapse
Affiliation(s)
- Digbijoy Nath
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
- Centre for Research on Ethnomedicine, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, 781026, India
| |
Collapse
|
3
|
Ghanemi A, Yoshioka M, St-Amand J. DNA Damage as a Mechanistic Link between Air Pollution and Obesity? MEDICINES (BASEL, SWITZERLAND) 2022; 10:medicines10010004. [PMID: 36662488 PMCID: PMC9863819 DOI: 10.3390/medicines10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
It has been shown that the risk of developing obesity, a serious modern health problem, increases with air pollution. However, the molecular links are yet to be fully elucidated. Herein, we propose a hypothesis via which air pollution-induced DNA damage would be the mechanistic link between air pollution and the enhanced risk of obesity and overweight. Indeed, whereas air pollution leads to DNA damage, DNA damage results in inflammation, oxidative stress and metabolic impairments that could be behind energy balance changes contributing to obesity. Such thoughts, worth exploring, seems an important starting point to better understand the impact of air pollution on obesity development independently from the two main energy balance pillars that are diet and physical activity. This could possibly lead to new applications both for therapies as well as for policies and regulations.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
4
|
In Vitro Mimicking of Obesity-Induced Biochemical Environment to Study Obesity Impacts on Cells and Tissues. Diseases 2022; 10:diseases10040076. [PMID: 36278576 PMCID: PMC9590073 DOI: 10.3390/diseases10040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity represents a heavy burden for modern healthcare. The main challenge facing obesity research progress is the unknown underlying pathways, which limits our understanding of the pathogenesis and developing therapies. Obesity induces specific biochemical environments that impact the different cells and tissues. In this piece of writing, we suggest mimicking obesity-induced in vivo biochemical environments including pH, lipids, hormones, cytokines, and glucose within an in vitro environment. The concept is to reproduce such biochemical environments and use them to treat the tissue cultures, explant cultures, and cell cultures of different biological organs. This will allow us to clarify how the obesity-induced biochemistry impacts such biological entities. It would also be important to try different environments, in terms of the compositions and concentrations of the constitutive elements, in order to establish links between the effects (impaired regeneration, cellular inflammation, etc.) and the factors constituting the environment (hormones, cytokines, etc.) as well as to reveal dose-dependent effects. We believe that such approaches will allow us to elucidate obesity mechanisms, optimize animal models, and develop therapies as well as novel tissue engineering applications.
Collapse
|
5
|
Grigorova N, Ivanova Z, Bjørndal B, Berge RK, Vachkova E, Milanova A, Penchev G, Georgiev IP. Diet restriction alone improves glucose tolerance and insulin sensitivity than its coadministration with krill or fish oil in a rabbit model of castration‐induced obesity. J Anim Physiol Anim Nutr (Berl) 2022; 106:1396-1407. [DOI: 10.1111/jpn.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Bodil Bjørndal
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Sports, Food, and Natural Sciences Western Norway University of Applied Sciences Bergen Norway
| | - Rolf Kristian Berge
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Heart Disease Haukeland University Hospital Bergen Norway
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Georgi Penchev
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Ivan Penchev Georgiev
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| |
Collapse
|
6
|
Secreted Protein Acidic and Rich in Cysteine (Sparc) KO Leads to an Accelerated Ageing Phenotype Which Is Improved by Exercise Whereas SPARC Overexpression Mimics Exercise Effects in Mice. Metabolites 2022; 12:metabo12020125. [PMID: 35208200 PMCID: PMC8879002 DOI: 10.3390/metabo12020125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein implicated in various functions, including metabolism, tissue regeneration, and functional homeostasis. SPARC/Sparc declines with ageing but increases with exercise. We aim to verify two hypotheses: (1) SPARC deficiency leads to an ageing-like phenotype (metabolic decline, muscle loss, etc.), and (2) SPARC overexpression would mimic exercise, counteract ageing, and improve age-related changes. Our mice experiments are divided into two parts. First, we explore the consequences of Sparc knockout (KO) and compare them to the ageing effects. We also observe the effects of exercise. In the second part, we study the effects of SPARC overexpression and compare them to the exercise benefits. At the end, we make an analysis of the results to point out the analogies between Sparc KO and the ageing-like phenotype on the one hand and make comparisons between SPARC overexpression and exercise in the context of exercise counteracting ageing. The measurements were mainly related to tissue weights, adiposity, metabolism, and muscle strength. The main findings are that Sparc KO reduced glucose tolerance, muscle glucose transporter expression, and abdominal adipose tissue weight but increased glycogen content in the muscle. SPARC overexpression increased muscle strength, muscle mass, and expressions of the muscle glucose transporter and mitochondrial oxidative phosphorylation but lowered the glycemia and the adiposity, especially in males. Collectively, these findings, and the data we have previously reported, show that Sparc KO mice manifest an ageing-like phenotype, whereas SPARC overexpression and exercise generate similar benefits. The benefits are towards counteracting both the SPARC deficiency-induced ageing-like phenotype as well as reversing the age-related changes. The potential applications of these findings are to build/optimize Sparc KO-based animal models of various health conditions and, on the other hand, to develop therapies based on introducing SPARC or targeting SPARC-related pathways to mimic exercise against age-related and metabolic disorders.
Collapse
|
7
|
Ghanemi A, Yoshioka M, St-Amand J. Exercise, Diet and Sleeping as Regenerative Medicine Adjuvants: Obesity and Ageing as Illustrations. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9010007. [PMID: 35049940 PMCID: PMC8778846 DOI: 10.3390/medicines9010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
Abstract
Regenerative medicine uses the biological and medical knowledge on how the cells and tissue regenerate and evolve in order to develop novel therapies. Health conditions such as ageing, obesity and cancer lead to an impaired regeneration ability. Exercise, diet choices and sleeping pattern have significant impacts on regeneration biology via diverse pathways including reducing the inflammatory and oxidative components. Thus, exercise, diet and sleeping management can be optimized towards therapeutic applications in regenerative medicine. It could allow to prevent degeneration, optimize the biological regeneration and also provide adjuvants for regenerative medicine.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-654-2296
| |
Collapse
|
8
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
9
|
Ageing and Obesity Shared Patterns: From Molecular Pathogenesis to Epigenetics. Diseases 2021; 9:diseases9040087. [PMID: 34940025 PMCID: PMC8700721 DOI: 10.3390/diseases9040087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
In modern societies, ageing and obesity represent medical challenges for healthcare professionals and caregivers. Obesity and ageing share common features including the related cellular and molecular pathways as well as the impacts they have as risk factors for a variety of diseases and health problems. Both of these health problems also share exercise and a healthy lifestyle as the best therapeutic options. Importantly, ageing and obesity also have common epigenetic changes (histone modification, DNA methylation, noncoding RNAs, and chromatin remodeling) that are also impacted by exercise. This suggests that epigenetic pathways are among the mechanisms via which exercise induces its benefits, including ageing and obesity improvements. Exploring these interrelations and based on the fact that both ageing and obesity represent risk factors for each other, would lead to optimizing the available therapeutic approaches towards improved obesity management and healthy ageing.
Collapse
|
10
|
Ghanemi A, Yoshioka M, St-Amand J. Measuring Exercise-Induced Secreted Protein Acidic and Rich in Cysteine Expression as a Molecular Tool to Optimize Personalized Medicine. Genes (Basel) 2021; 12:1832. [PMID: 34828438 PMCID: PMC8621187 DOI: 10.3390/genes12111832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
The numerous exercise benefits for health as well as applications for diseases has lead to exercise being prescribed in many pathological conditions. Secreted protein acidic and rich in cysteine (SPARC) gene expression is stimulated by exercise and SPARC has been suggested as a molecular mediator of exercise. Therefore, we suggest using this property for personalized medicine. This can be achieved by prescribing the exercise with a pattern (duration, intensity, etc.) that corresponds to the optimum SPARC/Sparc expression. We expect this approach to optimize the exercise therapy in both the preventive and curative contexts. In the research field, measuring exercise -dependent expression of Sparc would represent a molecular tool to further optimize the selection of exercise animal models as well.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Ghanemi A, Yoshioka M, St-Amand J. Post-Coronavirus Disease-2019 (COVID-19): Toward a Severe Multi-Level Health Crisis? Med Sci (Basel) 2021; 9:medsci9040068. [PMID: 34842764 PMCID: PMC8629009 DOI: 10.3390/medsci9040068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
There were already numerous challenges facing the healthcare system prior to the ongoing coronavirus disease-2019 (COVID-19) pandemic. Although we look forward to ending this pandemic, it is still expected that the healthcare system will face further challenges leading to a multi-level health crisis. Indeed, after the COVID-19 pandemic, there will still be COVID-19 active cases and those left with health problems following COVID-19 infection who will be of a particular impact. In addition, we also have the health problems that either emerged or worsened during COVID-19, especially with the reduced ability of the healthcare system to take care of many non COVID-19 patients during the COVID-19 pandemic. Such expected evolution of the situation highlights the necessity for the decision-makers to consider applying serious reforms and take quick measures to prevent a post-COVID-19 health crisis.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CREMI, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Quebec City, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CREMI, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Quebec City, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CREMI, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Quebec City, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +418-654-2296; Fax: +418-654-2761
| |
Collapse
|
12
|
Ghanemi A, Yoshioka M, St-Amand J. Impact of Adiposity and Fat Distribution, Rather Than Obesity, on Antibodies as an Illustration of Weight-Loss-Independent Exercise Benefits. MEDICINES 2021; 8:medicines8100057. [PMID: 34677486 PMCID: PMC8537631 DOI: 10.3390/medicines8100057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Obesity represents a risk factor for a variety of diseases because of its inflammatory component, among other biological patterns. Recently, with the ongoing COVID-19 crisis, a special focus has been put on obesity as a status in which antibody production, among other immune functions, is impaired, which would impact both disease pathogenesis and vaccine efficacy. Within this piece of writing, we illustrate that such patterns would be due to the increased adiposity and fat distribution pattern rather than obesity (as defined by the body mass index) itself. Within this context, we also highlight the importance of the weight-loss-independent effects of exercise.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
13
|
Trefoil Factor Family Member 2 Expression as an Indicator of the Severity of the High-Fat Diet-Induced Obesity. Genes (Basel) 2021; 12:genes12101505. [PMID: 34680900 PMCID: PMC8535368 DOI: 10.3390/genes12101505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Trefoil Factor Family Member 2 (TFF2) belongs to TFF family peptides that includes TFF1, TFF2, TFF3. TFF2 is mainly known for its roles in the mucosal protection. In the context of obesity and high fat diet (HFD), Tff2 has been characterized as a HFD-induced gene. The knock-out of Tff2 in mice lead to the protection from HFD-induced obesity with a metabolic profile towards a negative energy balance. Such HFD-specific expression gives Tff2 a pattern worth exploring in biomedical research. Indeed, measuring TFF2/TFF2/Tff2 expression in biological samples following the ingestion of high-fat diet reflects the biological "responsiveness" to the lipids ingestion and would reflect the severity of obesity establishment afterwards. Such property could be explored for instance to screen animal models, evaluate the predisposition to HFD-induced obesity as well as in biomedical and clinical applications. Results might advance obesity research especially in terms of understanding lipid-induced signals, appetite control and adiposity storage.
Collapse
|
14
|
Ghanemi A, Yoshioka M, St-Amand J. Trefoil Factor Family Member 2: From a High-Fat-Induced Gene to a Potential Obesity Therapy Target. Metabolites 2021; 11:metabo11080536. [PMID: 34436477 PMCID: PMC8401738 DOI: 10.3390/metabo11080536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity has its epidemiological patterns continuously increasing. With controlling both diet and exercise being the main approaches to manage the energy metabolism balance, a high-fat (HF) diet is of particular importance. Indeed, lipids have a low satiety potential but a high caloric density. Thus, focusing on pharmacologically targetable pathways remains an approach with promising therapeutic potential. Within this context, trefoil factor family member 2 (Tff2) has been characterized as specifically induced by HF diet rather than low-fat diet. TFF2 has also been linked to diverse neurological mechanisms and metabolic patterns suggesting its role in energy balance. The hypothesis is that TFF2 would be a HF diet-induced signal that regulates metabolism with a focus on lipids. Within this review, we put the spotlight on key findings highlighting this line of thought. Importantly, the hypothetical mechanisms pointed highlight TFF2 as an important contributor to obesity development via increasing lipids intestinal absorption and anabolism. Therefore, an outlook for future experimental activities and evaluation of the therapeutic potential of TFF2 inhibition is given. Indeed, its knockdown or downregulation would contribute to an antiobesity phenotype. We believe this work represents an addition to our understanding of the lipidic molecular implications in obesity, which will contribute to develop therapies aiming to manage the lipidic metabolic pathways including the absorption, storage and metabolism via targeting TFF2-related pathways. We briefly discuss important relevant concepts for both basic and clinical researchers.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|