1
|
Liu YS, Lai MC, Tzeng YC, Liu IM. Polyphenolic Hispolon Derived from Medicinal Mushrooms of the Inonotus and Phellinus Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments. Nutrients 2025; 17:266. [PMID: 39861396 PMCID: PMC11767296 DOI: 10.3390/nu17020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Background: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. Methods: In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.5, or 10 μmol/L. In the in vivo assays, streptozotocin-induced diabetic rats with excision wounds received daily topical applications of 0.2 g of 5% (w/w) hispolon ointment. Results: Hispolon improved cell viability; suppressed oxidative stress by reducing reactive oxygen species, lipid peroxidation, and oxidative DNA damage; and restored the reduced glutathione/oxidized glutathione ratio. The scratch assay demonstrated that hispolon at 10 μmol/L enhanced fibroblast migration impaired by high-glucose conditions. Treatment with 5% (w/w) hispolon ointment accelerated wound contraction, reduced the epithelialization time, and enhanced tissue regeneration with an efficacy comparable to that of Fespixon® cream, as shown by histological findings of increased fibroblast activity, collagen deposition, and capillary growth. Hispolon ointment also modulated macrophage polarization in diabetic wounds by reducing M1 markers and enhancing M2 markers. In a diabetic rat dead-space-wound model, 5% (w/w) hispolon ointment reduced the levels of pro-inflammatory cytokines, increased those of anti-inflammatory cytokines and growth factors, and stimulated Type I and III collagen synthesis, effectively promoting wound healing. In incisional wounds, hispolon ointment improved the wound-breaking strength, showing results comparable to that of Fespixon® cream. Safety assessments confirmed that hispolon ointment showed no acute dermal toxicity. These findings underscore hispolon's potential as a promising candidate for diabetic wound management by mitigating oxidative stress, enhancing tissue regeneration, and accelerating wound healing.
Collapse
Affiliation(s)
- Yi-Shan Liu
- Department of Dermatology, E-Da Hospital, I-Shou University, Kaohsiung City 84001, Taiwan
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung City 84001, Taiwan
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan;
| | - Mei-Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan;
| | - Yu-Cheng Tzeng
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan;
| |
Collapse
|
2
|
Yang R, Zhou Y, Hu Y, Liu S. Periosteal distraction as a new surgical technique for the treatment of senile diabetic foot: A retrospective case analysis. Medicine (Baltimore) 2025; 104:e41183. [PMID: 40184093 PMCID: PMC11709152 DOI: 10.1097/md.0000000000041183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
This study investigates the clinical effect and safety of periosteal distraction in the treatment of senile diabetic foot. The clinical data of 45 patients with diabetic foot treated with periosteal distraction in the Central Hospital of Dalian University of Technology from January 2020 to May 2024 were retrospectively analyzed. Finally, 42 patients were followed up, and 3 patients were lost to follow-up, including 29 males and 13 females, aged (71.17 ± 6.43), (62-84) years respectively. The Wagner grade of the ulcer surface of the affected foot was grade 2 in 25 cases, grade 3 in 13 cases, and grade 4 in 4 cases; the ulcer sites were toes in 18 cases, soles in 14 cases, dorsum of the foot in 8 cases, heels in 1 case, and ankles in 1 case. The toe oxygen saturation, ankle-brachial index (ABI), skin temperature and visual analogue score (VAS) were recorded before operation and at 1 day, 7 days, 14 days, 1 month, 2 months, and 3 months after operation. The therapeutic effect was observed and evaluated in combination with Michigan neurological sign score and lower limb computed tomography angiography. The wound ulcer healing rate, amputation rate and ulcer recurrence were also counted. The toe oxygen saturation, ABI, skin temperature, VAS score and Michigan neurological sign score of all patients were significantly improved after operation compared with those before operation, and the differences were statistically significant (P < .05); After a 3-month post-surgery period, 37 patients were observed to have microcirculation formation in the affected limb, as well as increased and thickened lower extremity arterioles in comparison to pre-surgery conditions, forming an interwoven network. During the follow-up period, 21 patients exhibited healed foot ulcers at 2 months post-surgery, while by the end of the follow-up period, 38 patients had healed foot ulcers, 5 patients had experienced a significant reduction in wound ulcer area, and the overall ulcer healing rate was 90%. Notably, no instances of amputation or ulcer recurrence were observed during treatment. Periosteal distraction is a new surgical method for the treatment of senile diabetic foot ulcer, which can obtain satisfactory short-term efficacy and is worthy of clinical promotion.
Collapse
Affiliation(s)
- Rui Yang
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, China
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, China
| | - Yue Zhou
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yunxiang Hu
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Sanmao Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
3
|
Dafinone ME, Lyle RE, Lee C, Mehta A, Dahle SE, Isseroff RR. Non-antibiotic approaches to mitigating wound infections: Potential for SSRIs and adrenergic antagonists as emerging therapeutics. Wound Repair Regen 2025; 33:e13240. [PMID: 39737521 DOI: 10.1111/wrr.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025]
Abstract
Bacterial biofilms represent a formidable challenge in the treatment of chronic wounds, largely because of their resistance to conventional antibiotics. The emergence of multidrug-resistant (MDR) bacterial strains exacerbates this issue, necessitating a shift towards exploring alternative therapeutic approaches. In response to this urgent need, there has been a surge in research efforts aimed at identifying effective non-antibiotic treatments. Recently noted among the non-antibiotic options are selective serotonin reuptake inhibitors (SSRIs) and beta-adrenergic (β-AR) antagonists. Both have demonstrated antimicrobial activities and wound-healing properties, which makes them particularly promising potential therapeutics for chronic wounds. This review seeks to comprehensively evaluate the landscape of non-antibiotic strategies for managing wound infections. By analysing the latest research findings and clinical developments, it aims to shed light on emerging therapeutic alternatives. Additionally, the review delves into the potential of repurposing systemic therapeutics for topical application, offering insights into the feasibility and challenges associated with current approaches. We also address the necessity of translating promising preclinical results into tangible clinical benefits.
Collapse
Affiliation(s)
- Mirabel E Dafinone
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- School of Medicine, University of Nevada Reno, Reno, Nevada, USA
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
| | - Rawlings E Lyle
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
- School of Medicine, University of California Davis, Davis, California, USA
| | - Conan Lee
- School of Medicine, University of California Davis, Davis, California, USA
| | - Alisha Mehta
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
| | - Sara E Dahle
- School of Medicine, University of California Davis, Davis, California, USA
- Podiatry Section, VA Northern California Health Care System, McClellan Park, California, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
| |
Collapse
|
4
|
ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, Briggs Early K, Bruemmer D, Callaghan BC, Echouffo-Tcheugui JB, Ekhlaspour L, Frykberg RG, Garg R, Garg SJ, Giurini JM, Khunti K, Lal R, Lingvay I, Matfin G, Pandya N, Pekas EJ, Pilla SJ, Polsky S, Segal AR, Seley JJ, Stanton RC, Bannuru RR. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2025. Diabetes Care 2025; 48:S252-S265. [PMID: 39651973 PMCID: PMC11635040 DOI: 10.2337/dc25-s012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
5
|
Khattak S, Ullah I, Sohail M, Akbar MU, Rauf MA, Ullah S, Shen J, Xu H. Endogenous/exogenous stimuli‐responsive smart hydrogels for diabetic wound healing. AGGREGATE 2024. [DOI: 10.1002/agt2.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes significantly impairs the body's wound‐healing capabilities, leading to chronic, infection‐prone wounds. These wounds are characterized by hyperglycemia, inflammation, hypoxia, variable pH levels, increased matrix metalloproteinase activity, oxidative stress, and bacterial colonization. These complex conditions complicate effective wound management, prompting the development of advanced diabetic wound care strategies that exploit specific wound characteristics such as acidic pH, high glucose levels, and oxidative stress to trigger controlled drug release, thereby enhancing the therapeutic effects of the dressings. Among the solutions, hydrogels emerge as promising due to their stimuli‐responsive nature, making them highly effective for managing these wounds. The latest advancements in mono/multi‐stimuli‐responsive smart hydrogels showcase their superiority and potential as healthcare materials, as highlighted by relevant case studies. However, traditional wound dressings fall short of meeting the nuanced needs of these wounds, such as adjustable adhesion, easy removal, real‐time wound status monitoring, and dynamic drug release adjustment according to the wound's specific conditions. Responsive hydrogels represent a significant leap forward as advanced dressings proficient in sensing and responding to the wound environment, offering a more targeted approach to diabetic wound treatment. This review highlights recent advancements in smart hydrogels for wound dressing, monitoring, and drug delivery, emphasizing their role in improving diabetic wound healing. It addresses ongoing challenges and future directions, aiming to guide their clinical adoption.
Collapse
Affiliation(s)
- Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Ihsan Ullah
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Mohammad Sohail
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Muhammad Usman Akbar
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou China
| | - Mohd Ahmar Rauf
- Department of Internal Medicine, Heme Oncology Unit, University of Michigan Ann Arbor Michigan USA
| | - Salim Ullah
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Hong‐Tao Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| |
Collapse
|
6
|
Soheili S, Dolatyar B, Adabi MR, Lotfollahi D, Shahrousvand M, Zahedi P, Seyedjafari E, Mohammadi-Rovshandeh J. Fabrication of fiber-particle structures by electrospinning/electrospray combination as an intrinsic antioxidant and oxygen-releasing wound dressing. J Mater Chem B 2024; 12:9074-9097. [PMID: 39171375 DOI: 10.1039/d4tb00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, we employed a combination of electrospinning and electrospray techniques to fabricate wound dressings with a particle-fiber structure, providing dual characteristics of oxygen-releasing and intrinsic antioxidant properties, simultaneously. The electrospun part of the dressing was prepared from a blend of polycaprolactone/gallic acid-grafted-gelatin (GA-g-GE), enabling intrinsic ROS scavenging. To the best of our knowledge, this is the first time that PCL/GA-g-GE was fabricated by electrospinning. Furthermore, polyvinyl pyrrolidone (PVP) microparticles, containing calcium peroxide nanoparticles (CNPs), were considered as the oxygen production agent through the electrospray part. The CNP content was 1% and 3% w/w of PVP while biopolymer:PCL was 10% w/w. The fabricated structures were characterized in terms of fiber/particle morphology, elemental analysis, oxygen release behavior, ROS inhibition capacity, and water contact angle assessments. The covalent bonding of gallic acid to gelatin was confirmed by 1H-NMR, UV spectroscopy, and FTIR. According to the SEM results, the morphology of the prepared PCL/biopolymer fibers was bead-free and with a uniform average diameter. The analysis of released oxygen showed that by increasing the weight percentage of CNPs from 1 to 3 wt%, the amount of released oxygen increased from 120 mmHg to 195 mmHg in 24 h, which remained almost constant until 72 h. The obtained DPPH assay results revealed that the introduction of GA-g-GE into the fibrous structure could significantly improve the antioxidant properties of wound dressing compared to the control group without CNPs and modified gelatine. In vitro, the fabricated wound dressings were evaluated in terms of biocompatibility and the potential of the dressing to protect human dermal fibroblasts under oxidative stress and hypoxia conditions by an MTT assay. The presence of GA-g-GE led to remarkable protection of the cells against oxidative stress and hypoxia conditions. In vivo studies revealed that the incorporation of intrinsic ROS inhibition and oxygen-releasing properties could significantly accelerate the wound closure rate during the experimental period (7, 14, and 21 days). Additionally, histopathological investigations in terms of H&E and Masson's trichrome staining showed that the incorporation of the two mentioned capabilities remarkably facilitated the wound-healing process.
Collapse
Affiliation(s)
- Shima Soheili
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Banafsheh Dolatyar
- Department of Cell and Developmental Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Darya Lotfollahi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Gilan, Iran.
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
7
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
8
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
9
|
Tian S, Tan S, Fan M, Gong W, Yang T, Jiao F, Qiao H. Hypoxic environment of wounds and photosynthesis-based oxygen therapy. BURNS & TRAUMA 2024; 12:tkae012. [PMID: 38860010 PMCID: PMC11163460 DOI: 10.1093/burnst/tkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 06/12/2024]
Abstract
The hypoxic environment is among the most important factors that complicates the healing of chronic wounds, such as venous leg ulcers, pressure injuries and diabetic foot ulcers, which seriously affects the quality of life of patients. Various oxygen supply treatments are used in clinical practice to improve the hypoxic environment at the wound site. However, problems still occur, such as insufficient oxygen supply, short oxygen infusion time and potential biosafety risks. In recent years, artificial photosynthetic systems have become a research hotspot in the fields of materials and energy. Photosynthesis is expected to improve the oxygen level at wound sites and promote wound healing because the method provides a continuous oxygen supply and has good biosafety. In this paper, oxygen treatment methods for wounds are reviewed, and the oxygen supply principle and construction of artificial photosynthesis systems are described. Finally, research progress on the photosynthetic oxygen production system to promote wound healing is summarized.
Collapse
Affiliation(s)
- Shuning Tian
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shenyu Tan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Mingjie Fan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Wenlin Gong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianchang Yang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
10
|
Basudan AM, Abas I, Shaheen MY, Alghamdi HS. Effectiveness of Topical Oxygen Therapy in Gingivitis and Periodontitis: Clinical Case Reports and Review of the Literature. J Clin Med 2024; 13:1451. [PMID: 38592268 PMCID: PMC10932006 DOI: 10.3390/jcm13051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Gingivitis and periodontitis are common oral pathological conditions. Several optional adjunctive local therapies are used clinically. While antibiotics and chlorhexidine are the most common agents of choice, their long-term use is associated with several adverse effects. Some of these include staining of teeth and restorations, cellular cytotoxicity and hypersensitivity. Topical oxygen therapy has been recently introduced and could be clinically capable of inhibiting plaque bacterial biofilm growth. Available as a mouthwash, toothpaste and oral gel, this formulation comprises cellulose, glycerol and sodium peroxoborate, and releases topical oxygen in a controlled manner. Moreover, it releases topical oxygen, in a controlled manner, and lactoferrin, which are capable of antibacterial action and stimulation of bone cells, respectively. The aim of this paper is to report a case of gingivitis and another case of periodontitis, both of which were successfully treated clinically with adjunctive local oxygen therapy (blue®m). Additionally, this paper aims to review the relevant literature in terms of adjunct topical or local therapies used in the treatment of gingivitis and periodontitis, in order to understand how local therapies are helpful and to know if local oxygen therapy is a suitable clinical alternative.
Collapse
Affiliation(s)
- Amani M. Basudan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (H.S.A.)
| | - Irfan Abas
- Department of Oral Implantology and Restorative Dentistry, Academy and Private Practice, Herenstraat 37, 1404 HC Bussum, The Netherlands;
| | - Marwa Y. Shaheen
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (H.S.A.)
| | - Hamdan S. Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (H.S.A.)
| |
Collapse
|
11
|
Bayraktar S, Üstün C, Kehr NS. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol Biosci 2024; 24:e2300363. [PMID: 38037316 DOI: 10.1002/mabi.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Indexed: 12/02/2023]
Abstract
Oxygen (O2 ) delivery biomaterials have attracted great interest in the treatment of chronic wounds due to their potential applications in local and continuous O2 generation and delivery, improving cell viability until vascularization occurs, promoting structural growth of new blood vessels, simulating collagen synthesis, killing bacteria and reducing hypoxia-induced tissue damage. Therefore, different types of O2 delivery biomaterials including thin polymer films, fibers, hydrogels, or nanocomposite hydrogels have been developed to provide controlled, sufficient and long-lasting O2 to prevent hypoxia and maintain cell viability until the engineered tissue is vascularized by the host system. These biomaterials are made by various approaches, such as encapsulating O2 releasing molecules into hydrogels, polymer microspheres and 3D printed hydrogel scaffolds and adsorbing O2 carrying reagents into polymer films of fibers. In this article, different O2 generating sources such as solid inorganic peroxides, liquid peroxides, and photosynthetic microalgae, and O2 carrying perfluorocarbons and hemoglobin are presented and the applications of O2 delivery biomaterials in promoting wound healing are discussed. Furthermore, challenges encountered and future perspectives are highlighted.
Collapse
Affiliation(s)
- Sema Bayraktar
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Cansu Üstün
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Nermin Seda Kehr
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| |
Collapse
|
12
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev 2024; 40:e3644. [PMID: 37232034 DOI: 10.1002/dmrr.3644] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS Principles of wound management, including debridement, wound bed preparation, and newer technologies involving alternation of wound physiology to facilitate healing, are of utmost importance when attempting to heal a chronic diabetes-related foot ulcer. However, the rising incidence and costs of diabetes-related foot ulcer management necessitate that interventions to enhance wound healing of chronic diabetes-related foot ulcers are supported by high-quality evidence of efficacy and cost effectiveness when used in conjunction with established aspects of gold-standard multidisciplinary care. This is the 2023 International Working Group on the Diabetic Foot (IWGDF) evidence-based guideline on wound healing interventions to promote healing of foot ulcers in persons with diabetes. It serves as an update of the 2019 IWGDF guideline. MATERIALS AND METHODS We followed the GRADE approach by devising clinical questions and important outcomes in the Patient-Intervention-Control-Outcome (PICO) format, undertaking a systematic review, developing summary of judgements tables, and writing recommendations and rationale for each question. Each recommendation is based on the evidence found in the systematic review and, using the GRADE summary of judgement items, including desirable and undesirable effects, certainty of evidence, patient values, resources required, cost effectiveness, equity, feasibility, and acceptability, we formulated recommendations that were agreed by the authors and reviewed by independent experts and stakeholders. RESULTS From the results of the systematic review and evidence-to-decision making process, we were able to make 29 separate recommendations. We made a number of conditional supportive recommendations for the use of interventions to improve healing of foot ulcers in people with diabetes. These include the use of sucrose octasulfate dressings, the use of negative pressure wound therapies for post-operative wounds, the use of placental-derived products, the use of the autologous leucocyte/platelet/fibrin patch, the use of topical oxygen therapy, and the use of hyperbaric oxygen. Although in all cases it was stressed that these should be used where best standard of care was not able to heal the wound alone and where resources were available for the interventions. CONCLUSIONS These wound healing recommendations should support improved outcomes for people with diabetes and ulcers of the foot, and we hope that widescale implementation will follow. However, although the certainty of much of the evidence on which to base the recommendations is improving, it remains poor overall. We encourage not more, but better quality trials including those with a health economic analysis, into this area.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | - Caroline McIntosh
- Podiatric Medicine, School of Health Sciences, University of Galway, Galway, Ireland
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Georgetown, Washington DC, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
13
|
Richardson M, Mani R. Oxygen Saturation or Tissue Oxygen Determinations on Skin Whose Viability is at Risk. INT J LOW EXTR WOUND 2024; 23:55-62. [PMID: 37880945 DOI: 10.1177/15347346231206423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The triad of ischaemia, neuropathy, and infection are among the principal causes of lower extremity wounds that are commonly prevalent in patients with diabetic foot (DF) a condition in which peripheral arterial disease commonly co-exists. The prevalence of this condition is increasing globally and with it, the mounting costs of its management. One aspect of management is saving limbs and or digits, a crucial part of this process is assessing tissue viability of skin which is a focus of this review: there are other aspects which are well described in the literature. Amputations are offered to limit the damage resulting from acute/chronic ischaemia. Holstein measured skin perfusion pressure using a radioisotope clearance technique to describe critically ischaemic skin; he found 30 mm Hg as the threshold above which healing may reliably be expected. Recent advances in vascular surgery and related technology have informed evidence-based advice to revascularize and save limbs; in practice, this may leave a wound in the distal skin unhealed; managing these raises questions of tissue viability. Much effort has been made to manage, prevent and to better understand these lower extremity wounds using measurements of tissue oxygen, oxygen saturation and skin imaging. The measurement techniques and their relevant merits are examined in this article. Advances in wound management systems and protocols can also facilitate the repair processes, and those which can have a particular impact on restoring or maintaining tissue perfusion are also discussed in the article.
Collapse
Affiliation(s)
| | - Raj Mani
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
- RIHES, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Chauhan S, Gulia M, Singh RP, Jhawat V. Diabetic Wound: Pathophysiology, Complications and Treatment Strategies. Curr Protein Pept Sci 2024; 25:200-205. [PMID: 37909438 DOI: 10.2174/0113892037276171231016103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Diabetic wound healing is expected to affect 25% of all diabetics, resulting in less severe external factors, economic costs, and less trauma. Topical formulations have been continually improved to achieve a range of amazing properties and have had a significant impact on the management of diabetic wounds. Topical insulin has become one of the most attractive and convenient wound healing techniques due to its excellent biocompatibility, water retention, and therapeutic properties. Multiple versatile topical insulins have been identified and have shown promise over the past few years as they greatly facilitate the management of diabetic wounds as we understand their etiology. The physiological wound healing process repairs damaged tissue and restores skin integrity. For about a century, insulin, a powerful healing agent, and it has been utilized in several clinical and experimental researches research studies to accelerate the healing of various injuries.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Gulia
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
16
|
Dziadek D, Sieroń A. Selected possibilities of physical medicine versus cancer diseases. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:598-603. [PMID: 39689210 DOI: 10.36740/merkur202405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Aims: This review aims to synthesize the latest literature on physical treatments for wounds, focusing on the use of ozone therapy, topical oxygen therapy, pulsed electromagnetic field therapy, and red light therapy in oncology patients. It evaluates the indications, benefits, and contraindications of these therapies, especially concerning cancer.. PATIENTS AND METHODS Materials and Methods: A literature search was conducted in publicly available online databases, covering publications in English and Polish from 2010 to 2024. The inclusion criteria comprised clinical trials, systematic reviews, meta-analyses, and review articles on physical treatments for wounds in oncology patients. The selection process involved pre-selection, title and abstract review, and full-text review to ensure compliance with the inclusion criteria. Data were analyzed to identify mechanisms of action, therapeutic efficacy, and potential risks associated with these therapies in oncology patients. Ozone therapy showed potential in reducing bacterial load and tumor hypoxia, enhancing chemotherapy efficacy. Topical oxygen therapy was effective for chronic wounds, with careful application near tumor sites. Pulsed electromagnetic field therapy demonstrated promising anticancer effects, inducing apoptosis in cancer cells. Red light therapy, while beneficial for managing side effects of cancer treatments, was contraindicated in areas with active tumors due to the risk of stimulating cancer cell proliferation. CONCLUSION Conclusions: Physical therapies offer benefits in wound management but require careful consideration in oncology patients. Personalized evaluation and further research are essential to establish safe and effective protocols for oncology patients, maximizing therapeutic benefits while minimizing risks.
Collapse
Affiliation(s)
| | - Aleksander Sieroń
- MEDICAL SCIENCES, JAN DLUGOSZ UNIVERSITY IN CZESTOCHOWA, CZESTOCHOWA, POLAND
| |
Collapse
|
17
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Gibbons CH, Giurini JM, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Silva PS, Stanton RC, Gabbay RA. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S231-S243. [PMID: 38078577 PMCID: PMC10725803 DOI: 10.2337/dc24-s012] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
18
|
Zhao Y, Zhang M, Zhang C, Yan H. Effect of local oxygen therapy combined with vacuum sealing drainage on the healing of stage IV sacrococcygeal pressure ulcers. Int Wound J 2023; 20:4253-4261. [PMID: 37574848 PMCID: PMC10681464 DOI: 10.1111/iwj.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
The present study aimed to investigate the effect of local oxygen therapy combined with vacuum sealing drainage (VSD) on the healing of stage IV pressure ulcers sacrococcygeal. In this prospective study, we included a total of 98 patients with stage IV sacrococcygeal pressure ulcers in our hospital between February 2021 and June 2022. The patients enrolled were randomly and equally divided into two groups: the study group (undergoing local oxygen therapy combined with VSD treatment) and the control group (receiving conventional treatment). The wound healing time and hospital stay were compared between the two groups. Additionally, the wound area, tissue type, wound exudation and pain intensity were assessed before treatment, 10, 20, 30 and 40 days after treatment. The incidence of complications was also calculated. The study group demonstrated significantly shorter wound healing time and hospital stays compared to the control group (p < 0.05). Before treatment, there were no significant differences in terms of wound area, tissue type and wound exudation between the two groups (p > 0.05); after 10, 20, 30 and 40 days of treatment, however, evidently smaller wound areas, improved tissue types and reduced wound exudation were observed in the study group compared to the control group (p < 0.05). Furthermore, the study group exhibited increased microvascular count compared to the control group (p < 0.05). Before treatment, there was no significant difference in pain intensity between the two groups (p > 0.05), whereas markedly lower pain intensity was seen in the study group than in the control group after 10, 20, 30 and 40 days of treatment (p < 0.05). The incidence of complications did not significantly differ between the two groups after 40 days of treatment (p > 0.05). Local oxygen therapy combined with VSD was found to effectively accelerate the healing process of stage IV sacrococcygeal pressure ulcers, leading to shorter hospital stays and improved patient prognosis. This combined therapy shows promise for widespread application in clinical practice.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Burn and Plastic Surgery, Renmin HospitalHubei University of MedicineShiyanChina
| | - Mi Zhang
- Department of Dermatology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Chuanlin Zhang
- Department of Cardiology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Hongwei Yan
- Department of Burn and Plastic Surgery, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
19
|
Yang J, Jin X, Liu W, Wang W. A Programmable Oxygenation Device Facilitates Oxygen Generation and Replenishment to Promote Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305819. [PMID: 37695102 DOI: 10.1002/adma.202305819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Inadequate oxygenation is one of the chief culprits for delayed wound healing. However, current oxygen therapies, such as hyperbaric oxygen therapy and topical oxygen therapy, face hurdles in providing sustained and long-term oxygenation to reverse wound hypoxia. Furthermore, their efficacy in rejuvenating wound injury is restricted by limited penetration of oxygen in the wound bed. Herein, this study proposes a programmable and portable oxygenation device (named GUFO oxydevice) by ingeniously integrating i) a controllable oxygen generation and unidirectional transmission system (COGT-UTS), and ii) a supramolecular assembled perfluorinated hyperbranched polymer/gelatin (GUF) hydrogel in which the perfluorinated hyperbranched polymer (FHBP) acts as an oxygen reservoir to ensure sustained and convenient oxygen replenishment and thus directly regulate the hypoxic wound microenvironment. Accelerating the wound healing process by GUFO oxydevice is achieved in both a diabetic rat and an acute porcine wound model without any secondary tissue damages. The present study demonstrates that the GUFO oxydevice holds promise as a practically feasible candidate for wound treatment.
Collapse
Affiliation(s)
- Jumin Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xin Jin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
20
|
Wu H, Chen J, Zhao P, Liu M, Xie F, Ma X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. MEMBRANES 2023; 13:802. [PMID: 37755224 PMCID: PMC10535523 DOI: 10.3390/membranes13090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.
Collapse
Affiliation(s)
| | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (F.X.); (X.M.)
| | | | | | | |
Collapse
|
21
|
Woodroof A, Moote J, Polansky J, Haith LR, Hickerson WL. Preliminary Study of Wound Oxygenation Comparing Skin Substitutes and Dressings. EPLASTY 2023; 23:e52. [PMID: 37743961 PMCID: PMC10517661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Improving oxygen delivery to challenging wound types has been shown to optimize and accelerate several key contributors to healing. This study aims to compare selective skin substitutes and primary dressings and evaluate their ability to transfer oxygen to the wound. Methods Visual and quantitative methods were employed to measure gas and fluid movement across several skin substitutes, including a bilayer nylon and silicone dressing coated with porcine gelatin and aloe vera (CNS), a porous bovine collagen-glycosaminoglycan (GAG) matrix dressing coated with silicone (UBC), and a urethane biodegradable temporizing matrix (PFD). Results Fluids did not move across solid silicone membranes or urethane foam while oxygen movement across solid silicone membranes was inversely proportional to the thickness of the membrane. Oxygen moved across the coated nylon and silicone dressing 5.63 times faster than across the bovine-GAG scaffold and 2.0 times faster than the biodegradable temporizing matrix of polyurethane. Conclusions The coated nylon and silicone matrix functioned like a membrane oxygenator, potentially augmenting atmospheric oxygen delivery to healing wounds.
Collapse
Affiliation(s)
| | - Joshua Moote
- Stedical Scientific Inc, Carlsbad, California
- ECA Labs, San Diego, California
- Drexel University College of Medicine, Philadelphia, Pennsylvania
- University of Tennessee Health Science Center, Memphis, Tennessee (retired)
| | | | - Linwood R Haith
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
22
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
23
|
Han X, Ju LS, Irudayaraj J. Oxygenated Wound Dressings for Hypoxia Mitigation and Enhanced Wound Healing. Mol Pharm 2023; 20:3338-3355. [PMID: 37338289 PMCID: PMC10324602 DOI: 10.1021/acs.molpharmaceut.3c00352] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Oxygen is a critical factor that can regulate the wound healing processes such as skin cell proliferation, granulation, re-epithelialization, angiogenesis, and tissue regeneration. However, hypoxia, a common occurrence in the wound bed, can impede normal healing processes. To enhance wound healing, oxygenation strategies that could effectively increase wound oxygen levels are effective. The present review summarizes wound healing stages and the role of hypoxia in wound healing and overviews current strategies to incorporate various oxygen delivery or generating materials for wound dressing, including catalase, nanoenzyme, hemoglobin, calcium peroxide, or perfluorocarbon-based materials, in addition to photosynthetic bacteria and hyperbaric oxygen therapy. Mechanism of action, oxygenation efficacy, and potential benefits and drawbacks of these dressings are also discussed. We conclude by highlighting the importance of design optimization in wound dressings to address the clinical needs to improve clinical outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Leah Suyeon Ju
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Zhang Y, Zhu Y, Ma P, Wu H, Xiao D, Zhang Y, Sui X, Zhang L, Dong A. Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydr Polym 2023; 312:120823. [PMID: 37059550 DOI: 10.1016/j.carbpol.2023.120823] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Diabetes wound are grave and universal complications of diabetes. Owing to poor treatment course, high amputation rate and mortality, diabetes wound treatment and care have become a global challenge. Wound dressings have received much attention due to their ease of use, good therapeutic effect, and low costs. Among them, carbohydrate-based hydrogels with excellent biocompatibility are considered to be the best candidates for wound dressings. Based on this, we first systematically summarized the problems and healing mechanism of diabetes wounds. Next, common treatment methods and wound dressings were discussed, and the application of various carbohydrate-based hydrogels and their corresponding functionalization (antibacterial, antioxidant, autoxidation and bioactive substance delivery) in the treatment of diabetes wounds were emphatically introduced. Ultimately, the future development of carbohydrate-based hydrogel dressings was proposed. This review aims to provide a deeper understanding of wound treatment and theoretical support for the design of hydrogel dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
25
|
Pasek J, Szajkowski S, Cieślar G. Application of Topical Hyperbaric Oxygen Therapy and Medical Active Dressings in the Treatment of Arterial Leg Ulcers-A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:5582. [PMID: 37420748 DOI: 10.3390/s23125582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Leg ulcers are a very serious worldwide medical problem. When the ulcer is extensive and deep the prognosis is usually unfavorable. The treatment requires comprehensive solutions that take into account modern specialized medical dressings, and more and more often, selected methods in the field of physical medicine. The study included 30 patients (13 women-43.4% and 17 men-56.6%) with chronic arterial ulcers of the lower limbs. The mean age of the treated patients was 65.63 ± 8.77 years. Patients were randomly assigned to two study groups. In group 1 (16 patients), specialist ATRAUMAN Ag medical dressings and local hyperbaric oxygen therapy treatments were used. In group 2 (14 patients), only specialized ATRAUMAN Ag dressings were used. The treatment was carried out for 4 weeks. The progress of healing ulcers was assessed by using the planimetric method, while the intensity of pain ailments was assessed by the visual analog VAS scale. In both study groups, a statistically significant reduction in the mean surface area of the treated ulcers was obtained, respectively, from 8.53 ± 1.71 cm2 to 5.55 ± 1.11 cm2 in group 1 (p < 0.001) and 8.43 ± 1.51 cm2 to 6.28 ± 1.13 cm2 in group 2 (p < 0.001). There was also a statistically significant reduction in the intensity of pain ailments, respectively: 7.93 ± 0.68 points to 5.00 ± 0.63 points in group 1 (p < 0.001) and 8.00 ± 0.67 points to 5.64 ± 0.49 points in group 2 (p < 0.001). The percentage change in ulcer area from baseline in group 1 was 34.6 ± 8.47% and was statistically significantly greater than in group 2 (25.23 ± 6.01%) (p = 0.003). In turn, the percentage assessment of the pain intensity assessed in the VAS scale in group 1 was 36.97 ± 6.36% and was statistically significantly higher compared to group 2 (29.34 ± 4.77%) (p = 0.002). The addition of local hyperbaric oxygen therapy treatments as a supplement to the therapy with the use of specialized medical dressings improves the effectiveness the arterial ulcers treatment of the lower limbs in terms of reducing the ulceration area and reducing pain ailments.
Collapse
Affiliation(s)
- Jarosław Pasek
- Collegium Medicum im. dr Władysława Biegańskiego, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej St., 42-200 Częstochowa, Poland
| | - Sebastian Szajkowski
- Faculty of Medical and Social Sciences, Warsaw Medical Academy of Applied Sciences, 8 Rydygiera St., 01-793 Warszawa, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Stefana Batorego St., 41-902 Bytom, Poland
| |
Collapse
|
26
|
He Y, Chang Q, Lu F. Oxygen-releasing biomaterials for chronic wounds breathing: From theoretical mechanism to application prospect. Mater Today Bio 2023; 20:100687. [PMID: 37334187 PMCID: PMC10276161 DOI: 10.1016/j.mtbio.2023.100687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic wounds have always been considered as "gordian knots" in medicine, in which hypoxia plays a key role in blocking healing. To address this challenge, although tissue reoxygenation therapy based on hyperbaric oxygen therapy (HBOT) has been performed clinically for several years, the bench to bedside still urges the evolution of oxygen-loading and -releasing strategies with explicit benefits and consistent outcome. The combination of various oxygen carriers with biomaterials has gained momentum as an emerging therapeutic strategy in this field, exhibiting considerable application potential. This review gives an overview of the essential relationship between hypoxia and delayed wound healing. Further, detailed characteristics, preparation methods and applications of various oxygen-releasing biomaterials (ORBMs) will be elaborated, including hemoglobin, perfluorocarbon, peroxide, and oxygen-generating microorganisms, those biomaterials are applied to load, release or generate a vast of oxygen to relieve the hypoxemia and bring the subsequent cascade effect. The pioneering papers regarding to the ORBMs practice are presented and trends toward hybrid and more precise manipulation are summarized.
Collapse
|
27
|
Al-Enazi NM, Alsamhary K, Ameen F. Evaluation of citrus pectin capped copper sulfide nanoparticles against Candidiasis causing Candida biofilms. ENVIRONMENTAL RESEARCH 2023; 225:115599. [PMID: 36898420 DOI: 10.1016/j.envres.2023.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The incidence of candidiasis has significantly increased globally in recent decades, and it is a significant source of morbidity and mortality, particularly in critically ill patients. Candida sp. ability to generate biofilms is one of its primary pathogenic traits. Drug-resistant strains have led to clinical failures of traditional antifungals, necessitating the development of a more modern therapy that can inhibit biofilm formation and enhance Candida sp. sensitivity to the immune system. The present study reports the anticandidal potential of pectin-capped copper sulfide nanoparticles (pCuS NPs) against Candida albicans. The pCuS NPs inhibit C. albicans growth at a minimum inhibitory concentration (MIC) of 31.25 μM and exhibit antifungal action by compromising membrane integrity and overproducing reactive oxygen species. The pCuS NPs, at their biofilm inhibitory concentration (BIC) of 15.63 μM, effectively inhibited C. albicans cells adhering to the glass slides, confirmed by light microscopy and scanning electron microscopy. Phase contrast microscopy pictures revealed that NPs controlled the morphological transitions between the yeast and hyphal forms by limiting conditions that led to filamentation and reducing hyphal extension. In addition, C. albicans showed reduced exopolysaccharide (EPS) production and exhibited less cell surface hydrophobicity (CSH) after pCuS NPs treatment. The findings suggest that pCuS NPs may be able to inhibit the emergence of virulence traits that lead to the formation of biofilms, such as EPS, CSH, and hyphal morphogenesis. The results raise the possibility of developing NPs-based therapies for C. albicans infections associated with biofilms.
Collapse
Affiliation(s)
- Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
28
|
Zhou D, Fu D, Yan L, Xie L. The Role of Hyperbaric Oxygen Therapy in the Treatment of Surgical Site Infections: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:762. [PMID: 37109720 PMCID: PMC10145168 DOI: 10.3390/medicina59040762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Surgical site infections (SSIs) are among the most prevalent postoperative complications, with significant morbidity and mortality worldwide. In the past half century, hyperbaric oxygen therapy (HBOT), the administration of 100% oxygen intermittently under a certain pressure, has been used as either a primary or alternative therapy for the management or treatment of chronic wounds and infections. This narrative review aims to gather information and evidence supporting the role of HBOT in the treatment of SSIs. We followed the Scale for the Quality Assessment of Narrative Review Articles (SANRA) guidelines and scrutinized the most relevant studies identified in Medline (via PubMed), Scopus, and Web of Science. Our review indicated that HBOT can result in rapid healing and epithelialization of various wounds and has potential beneficial effects in the treatment of SSIs or other similar infections following cardiac, neuromuscular scoliosis, coronary artery bypass, and urogenital surgeries. Moreover, it was a safe therapeutic procedure in most cases. The mechanisms related to the antimicrobial activity of HBOT include direct bactericidal effects through the formation of reactive oxygen species (ROS), the immunomodulatory effect of HBOT that increase the antimicrobial effects of the immune system, and the synergistic effects of HBOT with antibiotics. We emphasized the essential need for further studies, especially randomized clinical trials and longitudinal studies, to better standardize HBOT procedures as well as to determine its full benefits and possible side effects.
Collapse
Affiliation(s)
| | | | | | - Linshen Xie
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Capó X, Monserrat-Mesquida M, Quetglas-Llabrés M, Batle JM, Tur JA, Pons A, Sureda A, Tejada S. Hyperbaric Oxygen Therapy Reduces Oxidative Stress and Inflammation, and Increases Growth Factors Favouring the Healing Process of Diabetic Wounds. Int J Mol Sci 2023; 24:ijms24087040. [PMID: 37108205 PMCID: PMC10139175 DOI: 10.3390/ijms24087040] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is the clinical application of oxygen at pressures higher than atmospheric pressure. HBOT has been effectively used to manage diverse clinical pathologies, such as non-healing diabetic ulcers. The aim of the present study was to analyse the effects of HBOT on the plasma oxidative and inflammation biomarkers and growth factors in patients with chronic diabetic wounds. The participants received 20 HBOT sessions (five sessions/week), and blood samples were obtained at sessions 1, 5 and 20, before and 2 h after the HBOT. An additional (control) blood sample was collected 28 days after wound recovery. No significant differences were evident in haematological parameters, whereas the biochemical parameters progressively decreased, which was significant for creatine phosphokinase (CPK) and aspartate aminotransferase (AST). The pro-inflammatory mediators, tumour necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β), progressively decreased throughout the treatments. Biomarkers of oxidative stress--plasma protein levels of catalase, extracellular superoxide dismutase, myeloperoxidase, xanthine oxidase, malondialdehyde (MDA) levels and protein carbonyls--were reduced in accordance with wound healing. Plasma levels of growth factors--platelet-derived growth factor (PDFG), transforming growth factor β (TGF-β) and hypoxia-inducible factor 1-alpha (HIF-1α)-- were increased as a consequence of HBOT and reduced 28 days after complete wound healing, whereas matrix metallopeptidase 9 (MMP9) progressively decreased with the HBOT. In conclusion, HBOT reduced oxidative and pro-inflammatory mediators, and may participate in activating healing, angiogenesis and vascular tone regulation by increasing the release of growth factors.
Collapse
Affiliation(s)
- Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Juan M Batle
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- MEDISUB Recerca, 07400 Alcúdia, Spain
| | - Josep A Tur
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Pons
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
30
|
Carter MJ, Frykberg RG, Oropallo A, Sen CK, Armstrong DG, Nair HK, Serena TE. Efficacy of Topical Wound Oxygen Therapy in Healing Chronic Diabetic Foot Ulcers: Systematic Review and Meta-Analysis. Adv Wound Care (New Rochelle) 2023; 12:177-186. [PMID: 35593010 PMCID: PMC9885545 DOI: 10.1089/wound.2022.0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/13/2022] [Indexed: 02/03/2023] Open
Abstract
Objective: To conduct a systematic review and meta-analysis of recently published randomized controlled trials (RCTs) that employed the use of topical oxygen therapy (TOT) as an adjunct therapy in the treatment of Wagner 1 and 2 diabetic foot ulcers. Approach: Following a literature search of eligible studies from 2010 onward, four RCTs were included. Studies were analyzed for patient and wound characteristics, outcomes, risk of bias, and quality of the evidence assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology. A random-effects meta-analysis for complete wound healing was carried out due to statistical heterogeneity of included studies. Results: Risk of bias judgment (RoB2 analysis) resulted in one low-risk trial and three trials with some risk. One study was determined to be the origin of the statistical heterogeneity. Pooled results showed statistical significance with a risk ratio (RR) of 1.59 (95% confidence interval [CI]: 1.07-2.37; p = 0.021). Sensitivity analysis, based on imputed values for missing outcomes, demonstrated that both the RR and 95% CIs changed little. The GRADE ratings for each domain were as follows: (a) risk of bias: moderate (3); (b) imprecision: moderate (2), high (1); (c) inconsistency: low (2), high (1); (d) indirectness: moderate (2), high (1); and (e) publication bias: moderate (1), high (2). Overall, the evidence was moderate. Innovation: Our study shows that TOT is a viable diabetic foot ulcer therapy. Conclusions: These data support the use of TOT for the treatment of chronic Wagner 1 or 2 diabetic foot ulcers in the absence of infection and ischemia.
Collapse
Affiliation(s)
| | - Robert G. Frykberg
- Diabetic Foot Consultants, Midwestern University, Glendale, Arizona, USA
| | - Alisha Oropallo
- Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, New York, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Harikrishna K.R. Nair
- Wounds Malaysia, Wound Care Unit, Department of Internal Medicine, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | | |
Collapse
|
31
|
Sumpio BJ, Mezghani I, Wang E, Li Z, Valsami EA, Theocharidis G, Veves A. Experimental treatments in clinical trials for diabetic foot ulcers: wound healers in the pipeline. Expert Opin Investig Drugs 2023; 32:95-99. [PMID: 36749693 DOI: 10.1080/13543784.2023.2178418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Diabetes affects 400 million people globally and patients and causes nephropathy, neuropathy, and vascular disease. Amongst these complications, diabetic foot ulcers remain a substantial problem for patients and clinicians. Aggressive wound care and antibiotics remain important for the healing of these chronic wounds, but even when treated these chronic ulcers can lead to infection and amputations. AREAS COVERED This paper reviews the pathophysiology of diabetic foot ulcers and the current management strategies. Then, it discusses novel therapeutics such as topical oxygen therapy as well as autologous patches and macrophage creams. EXPERT OPINION Diabetic foot ulcers are a substantial problem for patients and clinicians. Early identification, aggressive wound care, and normoglycemia remain the standard of care, however when these fail it is important to adapt. Since each patient and wound vary drastically we believe they should be treated as such. For patient with intact perfusion, topical ON101 and sucrose octasulfate creams can help. While patient with peripheral arterial disease should consider topical oxygen therapy as an adjunct. However, as scientists gain a better understanding of the pathophysiology behind DFUs, the hope is that this new wave of therapeutics will emerge.
Collapse
Affiliation(s)
- Brandon J Sumpio
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Enya Wang
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhuqing Li
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleftheria-Angeliki Valsami
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Pasek J, Szajkowski S, Travagli V, Cieślar G. Topical Hyperbaric Oxygen Therapy Versus Local Ozone Therapy in Healing of Venous Leg Ulcers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1967. [PMID: 36767335 PMCID: PMC9915083 DOI: 10.3390/ijerph20031967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND the treatment of venous leg ulcers still poses a difficult interdisciplinary medical problem. The aim of this study was to compare the therapeutic efficacy of local hyperbaric oxygen therapy with local ozone therapy in the treatment of venous leg ulcers. MATERIALS this study included 114 patients; 60 males (52.63%) and 54 females (47.36%) of ages ranging between 39 and 88 years (mean age: 68.9 ± 9.8 years) with venous leg ulcers, who underwent topical hyperbaric oxygen therapy (group I) and local ozone therapy (group II). In each of the study groups, the patients underwent 30 therapeutic procedures lasting 30 min each. The progress in wound healing was evaluated by computerized planimetry, and the intensity of pain was assessed with the use of the Visual Analogue Scale (VAS). RESULTS in both groups of treated patients, a statistically significant (p = 0.000001) reduction in the area of treated ulcers was achieved. In group I, the wound area decreased by an average of 69.67 ± 22.52%, from 7.55 ± 2.99 cm2 to 2.78 ± 2.43 cm2, and in group II, by an average of 41.33 ± 21.31%, from 7.36 ± 2.82 cm2 to 4.62 ± 2.76 cm2. In both groups of patients, a statistically significant (p = 0.000001) reduction in the intensity of pain ailments was observed: in group I, by an average of 0.55 ± 0.54 points, and in group II, by an average of 2.33 ± 0.82 points on the VAS scale. CONCLUSIONS local hyperbaric oxygen therapy and local ozone therapy cause a statistically significant reduction in the surface area of venous leg ulcers as well as in the intensity of pain. Better results were observed after the application of local hyperbaric oxygen therapy procedures.
Collapse
Affiliation(s)
- Jarosław Pasek
- Faculty of Health Sciences, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej St., 42-200 Częstochowa, Poland
| | - Sebastian Szajkowski
- Faculty of Medical Sciences, Medical University of Mazovia in Warsaw, 8 Rydygiera St., 01-793 Warszawa, Poland
| | - Valter Travagli
- Department of Biotechnology, Chemistry and Pharmacy, Viale Aldo Moro 2, 53100 Siena, Italy
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Stefana Batorego St., 41-902 Bytom, Poland
| |
Collapse
|
33
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Gibbons CH, Giurini JM, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Sun JK, Gabbay RA, on behalf of the American Diabetes Association. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S203-S215. [PMID: 36507636 PMCID: PMC9810462 DOI: 10.2337/dc23-s012] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
34
|
Oyebode OA, Jere SW, Houreld NN. Current Therapeutic Modalities for the Management of Chronic Diabetic Wounds of the Foot. J Diabetes Res 2023; 2023:1359537. [PMID: 36818748 PMCID: PMC9937766 DOI: 10.1155/2023/1359537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Impaired wound healing is common in patients with diabetes mellitus (DM). Different therapeutic modalities including wound debridement and dressing, transcutaneous electrical nerve stimulation (TENS), nanomedicine, shockwave therapy, hyperbaric (HBOT) and topical (TOT) oxygen therapy, and photobiomodulation (PBM) have been used in the management of chronic diabetic foot ulcers (DFUs). The selection of a suitable treatment method for DFUs depends on the hosts' physiological status including the intricacy and wound type. Effective wound care is considered a critical component of chronic diabetic wound management. This review discusses the causes of diabetic wounds and current therapeutic modalities for the management of DFUs, specifically wound debridement and dressing, TENS, nanomedicine, shockwave therapy, HBOT, TOT, and PBM.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| | - Sandy Winfield Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| |
Collapse
|
35
|
Sun X, Li R, Yang X, Yuan L. Efficacy and safety of topical oxygen therapy for diabetic foot ulcers: An updated systematic review and meta-analysis. Int Wound J 2022; 19:2200-2209. [PMID: 35510518 PMCID: PMC9705166 DOI: 10.1111/iwj.13830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
To evaluate the efficacy and safety of topical oxygen therapy (TOT) in diabetic foot ulcers (DFUs), researchers systematically retrieved relevant studies from PubMed, EMBASE, Web of Science, CENTRAL and ClinicalTrials.gov. Relevant studies were searched from database inception to January 2022. Two researchers independently screened the literature, extracted data and assessed the quality of the included studies. Statistical analysis was performed in Stata 16.0. A total of seven RCTs involving 614 participants were included. Compared with the control group, the TOT group had a higher healing rate (RR = 1.63, 95% CI [1.33, 2.00]). According to descriptive analysis, TOT reduced the ulcer area and improved healing durability and quality of life. Furthermore, it had no effect on the occurrence of adverse events. However, it was unclear whether it would be able to reduce the healing time. The existing evidence suggests that TOT is effective and safe for chronic DFUs. Further studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Xian‐Kun Sun
- Department of NephrologyWest China Hospital of Sichuan UniversityChengduChina
- West China School of NursingSichuan UniversityChengduChina
| | - Rao Li
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Xiao‐Ling Yang
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| | - Li Yuan
- Department of Endocrinology and MetabolismWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|