1
|
Ruan L, Fang N, Zhao X, Chen W, Wu Z, Wu X. Key oncogenes and candidate drugs for hepatitis-B-driven hepatocellular carcinoma progression. Discov Oncol 2025; 16:116. [PMID: 39903352 PMCID: PMC11794919 DOI: 10.1007/s12672-025-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND This study aimed to uncover the key hepatitis-B (HB)-related liver cancer (LC) promoting genes, and clarity their interrelationships, enrichments, impacts on LC immune infiltration, and potential drugs targeting these genes. METHODS The LC-survival associated genes were acquired from the LIHC samples of the TCGA-database; and HB related genes from the DisGeNET database. The intersection was used to screen the key genes. Using the 8 HB-LC genes, we constructed prognostic models for survival prediction of HBV positive patients with LIHC and performed enrichment analysis, interaction analysis, immune infiltration analysis, and potential drug digging from the GTRP and GDSC databases. RESULTS In the core intersection of different sets. Based on these genes, prognostic cox regression models for OS and DFS were constructed. Overall, HB-LC genes were significantly negatively correlated with Th17, MAIT, monocytes, and CD4 Naive cells, while they were positively correlated with B cells, nTreg cells, and Tr1 cells. Among 8 genes, MKI67, EZH2, and CDCA5 were hub ones. Finally, 7 drugs target at least three HB-LC genes and can be used as novel drugs. CONCLUSIONS Together, eight key HB-LC genes play important cancer-promoting roles in LC, which may be the molecular mechanism by which HBV drives the development of LC.
Collapse
Affiliation(s)
- Liqin Ruan
- Jiuiiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Ningbo Fang
- Jiuiiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Xinhua Zhao
- Jiuiiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Weili Chen
- Jiuiiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Zhaoping Wu
- Jiuiiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China
| | - Xiaoyong Wu
- Jiuiiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, China.
| |
Collapse
|
2
|
Shodry S, Hasan YTN, Ahdi IR, Ulhaq ZS. Gene targets with therapeutic potential in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4543-4547. [PMID: 39678796 PMCID: PMC11577361 DOI: 10.4251/wjgo.v16.i12.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 11/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Major treatments include liver transplantation, resection, and chemotherapy, but the 5-year recurrence rate remains high. Late diagnosis often prevents surgical intervention, contributing to poor patient survival rates. Carcinogenesis in HCC involves genetic alterations that drive the transformation of normal cells into malignant ones. Enhancer of zeste homolog 2 (EZH2), a key regulator of cell cycle progression, is frequently upregulated in HCC and is associated with advanced stages and poor prognosis, making it a potential biomarker. Additionally, signal transducer and activator of transcription 3, which binds to EZH2, affects disease staging and outcomes. Targeting EZH2 presents a promising therapeutic strategy. On the other hand, abnormal lipid metabolism is a hallmark of HCC and impacts prognosis. Fatty acid binding protein 5 is highly expressed in HCC tissues and correlates with key oncogenes, suggesting its potential as a biomarker. Other genes such as guanine monophosphate synthase, cell division cycle associated 5, and epidermal growth factor receptor provide insights into the molecular mechanisms of HCC, offering potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Syifaus Shodry
- Faculty of Medicine and Health Sciences, Maulana Ibrahim Islamic State University of Malang, Malang 65144, Jawa Timur, Indonesia
| | - Yuliono Trika Nur Hasan
- Faculty of Medicine and Health Sciences, Maulana Ibrahim Islamic State University of Malang, Malang 65144, Jawa Timur, Indonesia
| | - Iwal Reza Ahdi
- Faculty of Medicine and Health Sciences, Maulana Ibrahim Islamic State University of Malang, Malang 65144, Jawa Timur, Indonesia
| | - Zulvikar Syambani Ulhaq
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia
| |
Collapse
|
3
|
Zhang Y, Chen S, You L, He Z, Xu P, Huang W. LINC00161 upregulated by M2-like tumor-associated macrophages promotes hepatocellular carcinoma progression by methylating HACE1 promoters. Cytotechnology 2024; 76:777-793. [PMID: 39435425 PMCID: PMC11490593 DOI: 10.1007/s10616-024-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/10/2024] [Indexed: 10/23/2024] Open
Abstract
M2-like tumor-associated macrophages (M2-TAM) played an essential part in hepatocellular carcinoma (HCC) progression. Long intergenic noncoding RNA 00161 (LINC00161), is a long non-coding RNA, that was related to HCC development. However, the relationship between LINC00161 and TAM remains indistinct. HCC cells were cocultured with an M2-like conditioned medium (M2-CM). cell counting kit-8 (CCK-8), plate cloning, cell scratch, and transwell assay evaluated cell biological activities of HCC cells. The interactions among molecules were analyzed by chromatin immunoprecipitation (CHIP), dual-luciferase reporter, and RNA immunoprecipitation (RIP). The methylation status of HECT domain and ankyrin repeat-containing, E3 ubiquitin protein ligase 1 (HACE1) was evaluated using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). The xenograft model was established in vivo using subcutaneous nude mice. Histological analyses were performed using hematoxylin-eosin (HE) staining. The expression of molecules was determined using immunohistochemistry (IHC), western blot and quantitative real-time PCR (qPCR). LINC00161 expression was promoted in HCC. LINC00161 knockdown significantly reduced HCC cell proliferation, migration, and invasion. Additionally, M2-TAM stimulated LINC00161 transcription and expression in HCC cells by secreting hepatocyte growth factor (HGF) to activate the Met/NFκB pathway. LINC00161 suppressed HACE1 expression, and knockdown of LINC00161 decreased the methylation on the HACE1 promoter. Meanwhile, a binding relationship between the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and HACE1 was observed. LINC00161 overexpression increased the binding of EZH2 on the HACE1 promoter region. Furthermore, LINC00161 knockdown suppressed tumor growth in vivo and induced HACE1 expression by inhibiting its methylation. LINC00161, induced by M2-TAM, played a pivotal role in contributing to HCC development by recruiting EZH2 to promote the methylation of HACE1. This underscores the significant involvement of LINC00161 in mediating the progression of HCC.
Collapse
Affiliation(s)
- Yujunya Zhang
- Third Clinical Medical College of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 Xinjiang Uygur China
| | - Shuying Chen
- Third Clinical Medical College of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 Xinjiang Uygur China
| | - Lina You
- Traditional Chinese Medicine Oncology Department, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 Xinjiang Uygur China
| | - Zhanao He
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| | - Peidong Xu
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| | - Wukui Huang
- Interventional Diagnosis and Treatment Department, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang Uygur China
| |
Collapse
|
4
|
Lee J, You C, Kwon G, Noh J, Lee K, Kim K, Kang K, Kang K. Integration of epigenomic and transcriptomic profiling uncovers EZH2 target genes linked to cysteine metabolism in hepatocellular carcinoma. Cell Death Dis 2024; 15:801. [PMID: 39516467 PMCID: PMC11549485 DOI: 10.1038/s41419-024-07198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2), a key protein implicated in various cancers including hepatocellular carcinoma (HCC), is recognized for its association with epigenetic dysregulation and pathogenesis. Despite clinical explorations into EZH2-targeting therapies, the mechanisms underlying its role in gene suppression in HCC have remained largely unexplored. Here, we integrate epigenomic and transcriptomic analyses to uncover the transcriptional landscape modulated by selective EZH2 inhibition in HCC. By reanalyzing transcriptomic data of HCC patients, we demonstrate that EZH2 overexpression correlates with poor patient survival. Treatment with the EZH2 inhibitor tazemetostat restored expression of genes involved in cysteine-methionine metabolism and lipid homeostasis, while suppressing angiogenesis and oxidative stress-related genes. Mechanistically, we demonstrate EZH2-mediated H3K27me3 enrichment at cis-regulatory elements of transsulfuration pathway genes, which is reversed upon inhibition, leading to increased chromatin accessibility. Among 16 EZH2-targeted candidate genes, BHMT and CDO1 were notably correlated with poor HCC prognosis. Tazemetostat treatment of HCC cells increased BHMT and CDO1 expression while reducing levels of ferroptosis markers FSP1, NFS1, and SLC7A11. Functionally, EZH2 inhibition dose-dependently reduced cell viability and increased lipid peroxidation in HCC cells. Our findings reveal a novel epigenetic mechanism controlling lipid peroxidation and ferroptosis susceptibility in HCC, providing a rationale for exploring EZH2-targeted therapies in this malignancy.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Geunho Kwon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junho Noh
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
5
|
Zhou X, Man M, Cui M, Zhou X, Hu Y, Liu Q, Deng Y. Relationship between EZH2 expression and prognosis of patients with hepatocellular carcinoma using a pathomics predictive model. Heliyon 2024; 10:e38562. [PMID: 39640777 PMCID: PMC11619983 DOI: 10.1016/j.heliyon.2024.e38562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) is overexpressed in hepatocellular carcinoma, promoting tumorigenesis and correlating with poor prognosis. Traditional histopathological examinations are insufficient to accurately predict hepatocellular carcinoma (HCC) survival; however, pathomics models can predict EZH2 expression and HCC prognosis. This study aimed to investigate the relationship between pathomics features and EZH2 expression for predicting overall survival of patients with HCC. Methods We analyzed 267 patients with HCC from the Cancer Genome Atlas database, with available pathological images and gene expression data. RNA sequencing data were divided into high and low EZH2 expression groups for prognosis and survival analysis. Pathological image features were screened using mRMR_RFE. A pathological model was constructed using a gradient boosting machine (GBM) algorithm, and efficiency evaluation and survival analysis of the model were performed. The R package "survminer" took the pathomics score (PS) cutoff value of 0.4628 to divide the patients into two groups: high and low PS expression. Survival analyses included Kaplan-Meier curve analysis, univariate and multivariate Cox regression analyses, and interaction tests. Potential pathomechanisms were explored through enrichment, differential, immune cell infiltration abundance, and gene mutation analyses. Result EZH2 was highly expressed in tumor samples but poorly expressed in normal tissue samples. Univariate and multivariate Cox regression analyses revealed that EZH2 was an independent risk factor for HCC (hazard ratio [HR], 2.792 and 3.042, respectively). Seven imaging features were selected to construct a pathomics model to predict EZH2. Decision curve analysis showed that the model had high clinical utility. Multivariate Cox regression analysis showed that high PS expression was an independent risk factor for HCC prognosis (HR, 2.446). The Kaplan-Meier curve showed that high PS expression was a risk factor for overall survival. Conclusion EZH2 expression can affect the prognosis of patients with liver cancer. Our pathological model could predict EZH2 expression and prognosis of patients with HCC with high accuracy and robustness, making it a new and potentially valuable tool.
Collapse
Affiliation(s)
- Xulin Zhou
- Department of Oncology, Hefei BOE Hospital, Hefei, PR China
| | - Muran Man
- Department of Oncology, People's Hospital of Shizhong District, Zaozhuang City, Shandong Province, PR China
| | - Min Cui
- Affiliated Hospital Of Jining Medical University (Shanxian Central Hospital), Heze City, Shandong Province, PR China
| | - Xiang Zhou
- People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, Xinjiang, CN, PR China
| | - Yan Hu
- Department of Oncology, Hefei BOE Hospital, Hefei, PR China
| | - Qinghua Liu
- Department of Oncology, Deyang People's Hospital, Deyang, Sichuan, CN, PR China
| | - Youxing Deng
- Department of Oncology, Hefei BOE Hospital, Hefei, PR China
| |
Collapse
|
6
|
Jiang L, Li L, Liu Y, Zhan M, Lu L, Yuan S, Liu Y. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol 2023; 14:1097277. [PMID: 36891274 PMCID: PMC9987615 DOI: 10.3389/fphar.2023.1097277] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and it usually occurs following chronic liver disease. Although some progress has been made in the treatment of HCC, the prognosis of patients with advanced HCC is not optimistic, mainly because of the inevitable development of drug resistance. Therefore, multi-target kinase inhibitors for the treatment of HCC, such as sorafenib, lenvatinib, cabozantinib, and regorafenib, produce small clinical benefits for patients with HCC. It is necessary to study the mechanism of kinase inhibitor resistance and explore possible solutions to overcome this resistance to improve clinical benefits. In this study, we reviewed the mechanisms of resistance to multi-target kinase inhibitors in HCC and discussed strategies that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Lei Jiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Luan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yongzhuang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Cellular senescence affects energy metabolism, immune infiltration and immunotherapeutic response in hepatocellular carcinoma. Sci Rep 2023; 13:1137. [PMID: 36670201 PMCID: PMC9860043 DOI: 10.1038/s41598-023-28436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Aging is an inevitable consequence of life, characterized by a progressive decline in tissue and organ function and an increased risk of death. There is growing evidence that aging is closely related to tumor development and immune regulation. However, in hepatocellular carcinoma, the relationship between cellular senescence and immune infiltration, energy metabolism, chemokines, and immunotherapeutic response is unclear and needs further study. We first analyzed 274 cellular senescence-associated genes by the NMF algorithm and identified two cellular senescence-associated clusters. Subsequently, we compared the differences between the two clusters, in terms of immune infiltration, energy metabolism, chemokines, and immunotherapeutic response to treatment. We further constructed risk models using cellular senescence-associated signature genes that could effectively identify the two subpopulations. Finally, we validated the validity and robustness of the risk model using an external dataset. We found significant differences in survival prognosis between two cellular senescence-associated clusters. In addition, we found significant differences in immune cell infiltration, expression of energy metabolism-related genes, expression of chemokine-related genes, expression of immune checkpoint-related genes, Tumor Immune Dysfunction and Exclusion between the two clusters. Also, a scoring system associated with cellular senescence was developed and validated as an independent prognostic indicator. It was validated as an independent prognostic factor and immunotherapeutic predictor for HCC. It was validated as an independent prognostic factor and immunotherapeutic predictor for HCC. The cellular senescence-related scoring system was validated as an independent prognostic factor and immunotherapy predictor for HCC, and patients with low CSS were characterized by prolonged survival time. Our study confirmed the relationship between cellular senescence and immune cell infiltration, energy metabolism, chemokines, expression of immune checkpoint-related genes, and response to immunotherapy. This enhances our understanding of cellular senescence and tumor immune microenvironment, energy metabolism, chemokines, and provides new insights to improve immunotherapy outcomes in HCC patients. It provides new insights to improve the outcome of immunotherapy in HCC patients.
Collapse
|
8
|
Long Noncoding RNA XIST Promotes Resistance to Lenvatinib in Hepatocellular Carcinoma Cells via Epigenetic Inhibition of NOD2. JOURNAL OF ONCOLOGY 2022; 2022:4537343. [PMID: 36304988 PMCID: PMC9596241 DOI: 10.1155/2022/4537343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022]
Abstract
Background. Hepatocellular carcinoma (HCC) is a severe global health issue that still lacks of effective treatments. Lenvatinib is a novel tyrosine kinase inhibitor (TKI) that has been approved for the treatment of HCC. However, drug resistance is inevitable and limits the clinical application of lenvatinib. Till now, there is still little knowledge about the mechanisms under the resistance to lenvatinib in HCC. Long noncoding RNA (lncRNA) is a group of noncoding RNAs that play essential roles in various physiological activities including the chemoresistance. In the present study, through RNA sequencing, we discovered that lncRNA XIST was upregulated in HCC cells that was insensitive to lenvatinib. Mechanically, we found that lncXIST promotes lenvatinib resistance via activation of EZH2-NOD2-ERK axis in HCC cells. Our data suggest that targeting lncXIST/EZH2/NOD2/ERK axis might be a promising strategy to enhance the efficacy of lenvatinib against HCC cells.
Collapse
|
9
|
Wong YP, Che Abdul Aziz R, Noor Aizuddin A, Mohd Saleh MF, Mohd Arshad R, Tan GC. High EZH2 Protein Expression Is a Poor Prognostic Predictor in IDH1 R132H-Negative Gliomas. Diagnostics (Basel) 2022; 12:2383. [PMID: 36292072 PMCID: PMC9600772 DOI: 10.3390/diagnostics12102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating data indicates that enhancer of zeste homology 2 (EZH2) and isocitrate dehydrogenase 1 (IDH1) are implicated in promoting tumourigenesis in a myriad of malignancies including gliomas. We aimed to determine the immunoexpression of EZH2 in gliomas and its correlation with clinicopathological variables. The prognostic value of the combined immunoexpression of EZH2 and IDH1 was further explored in a retrospective analysis involving 56 patients with histologically confirmed gliomas in Universiti Kebangsaan Malaysia Medical Centre from 2010 to 2016. The patients were then followed up for a period of five years. EZH2 and IDH1 R132H immunoexpressions were performed and analysed on respective tissue blocks. Five-year progression-free survival (PFS) and overall survival (OS) were estimated by Kaplan−Meier analysis. Univariate and multivariate Cox proportional hazard regression models were performed to evaluate the value of EZH2 as an independent factor for the prediction of PFS and OS. High EZH2 immunoexpression was demonstrated in 27 (48.2%) gliomas. High EZH2 expression was significantly correlated with older age (p = 0.003), higher tumour grade (p < 0.001), negative IDH1 R132H immunoexpression (p = 0.039), a poor 5-year PFS (mean = 9.7 months, p < 0.001) and 5-year OS (mean = 28.2 months, p = 0.007). In IDH1 R132H-negative gliomas, there was a trend toward shorter 5-year PFS (mean = 8.0 months, p = 0.001) and 5-year OS (mean = 28.7 months, p = 0.06) in gliomas demonstrating high EZH2 expression compared with those with low EZH2 expression. High EZH2 immunoexpression is an unfavourable independent prognostic predictor of poor survival in gliomas. EZH2 analysis might therefore be of clinical value for risk stratification, especially in patients with IDH1 R132H-negative gliomas.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Roziasyazni Che Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Azimatun Noor Aizuddin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Muhamad Fakhri Mohd Saleh
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Roslina Mohd Arshad
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Chen Z, Lin X, Wan Z, Xiao M, Ding C, Wan P, Li Q, Zheng S. High Expression of EZH2 Mediated by ncRNAs Correlates with Poor Prognosis and Tumor Immune Infiltration of Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13050876. [PMID: 35627262 PMCID: PMC9141487 DOI: 10.3390/genes13050876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by a complex regulatory network. Increasing evidence suggests that an abnormal gene expression of EZH2 is associated with HCC progression. However, the molecular mechanism by which non-coding RNAs (ncRNAs) regulate EZH2 remains elusive. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to perform differential expression analysis and prognostic analysis. We used the Encyclopedia of RNA Interactomes (ENCORI) database to predict candidate miRNAs and lncRNAs that may bind to EZH2. Subsequently, the comprehensive analysis (including expression analysis, correlation analysis, and survival analysis) identified ncRNAs that contribute to EZH2 overexpression. Results: EZH2 was found to be upregulated in the majority of tumor types and associated with a poor prognosis. Hsa-miR-101-3p was identified as a target miRNA of EZH2. Additionally, SNHG6 and MALAT1 were identified as upstream lncRNAs of hsa-miR-101-3p. Meanwhile, correlation analysis revealed that EZH2 expression was significantly associated with the infiltration of several immune cell types in HCC. Conclusion: SNHG6 or MALAT1/hsa-miR-101-3p/EZH2 axis were identified as potential regulatory pathways in the progression of HCC.
Collapse
Affiliation(s)
- Zhitao Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Xin Lin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhenmiao Wan
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- School of Medicine, Zhejiang Chinese Medical University Zhejiang Shuren College, Hangzhou 310003, China
| | - Min Xiao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Chenchen Ding
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Pengxia Wan
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
| | - Qiyong Li
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- Correspondence: (Q.L.); (S.Z.); Tel.: +86-0571-56757021 (S.Z.)
| | - Shusen Zheng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China; (Z.C.); (X.L.); (Z.W.); (M.X.); (C.D.); (P.W.)
- School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (Q.L.); (S.Z.); Tel.: +86-0571-56757021 (S.Z.)
| |
Collapse
|