1
|
Heumann M, Jacob A, Gueorguiev B, Richards RG, Benneker LM. Load Changes on a Short-Segment Posterior Instrumentation After Transosseous Disruption of L3 Vertebra - A Biomechanical Human Cadaveric Study. Global Spine J 2025; 15:2042-2050. [PMID: 39214863 PMCID: PMC11571447 DOI: 10.1177/21925682241282276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Study DesignBiomechanical Cadaveric Study.ObjectivesFollowing the successful use of a novel implantable sensor (Monitor) in evaluating the progression of fracture healing in long bones and posterolateral fusion of the spine based on implant load monitoring, the aim of this study was to investigate its potential to assess healing of transosseous fractures of a lumbar vertebra stabilized with a pedicle-screw-rod construct.MethodsSix human cadaveric spines were instrumented with pedicle screws and rods spanning L3 vertebra. The spine was loaded in Flexion-Extension (FE), Lateral-Bending (LB) and Axial-Rotation (AR) with an intact L3 vertebra and after its transosseous disruption, creating an AO B1 type fracture. The implant load was measured on the one rod using the Monitor and on the contralateral rod by strain gauges to validate the Monitor's measurements. In parallel, the range of motion (ROM) was assessed.ResultsROM increased significantly in all directions in the fractured model (P ≤ 0.049). The Monitor measured a significant increase in implant load in FE (P = 0.002) and LB (P = 0.045), however, not in AR. The strain gauge - aligned with the rod axis and glued onto its posterior side - detected an increased implant load not only in FE (P = 0.001) and LB (P = 0.016) but also in AR (P = 0.047).ConclusionAfter a complete transosseous disruption of L3 vertebra, the implant load on the rods was considerably higher vs the state with an intact vertebral body. Innovative implantable sensors could monitor those changes, allowing assessment of the healing progression based on quantifiable data.
Collapse
Affiliation(s)
- Maximilian Heumann
- Department of Biomedical Development, AO Research Institute Davos, Davos, Switzerland
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Alina Jacob
- Department of Biomedical Development, AO Research Institute Davos, Davos, Switzerland
| | - Boyko Gueorguiev
- Department of Biomedical Development, AO Research Institute Davos, Davos, Switzerland
| | - R. Geoff Richards
- Department of Biomedical Development, AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
2
|
Williams KE, Harrer JA, LaBelle SA, Leguineche K, Kaiser J, Karipott S, Lin A, Vongphachanh A, Fulton T, Walker Rosenthal J, Muhib F, Ong KG, Weiss JA, Willett NJ, Guldberg RE. Early resistance rehabilitation improves functional regeneration following segmental bone defect injury. NPJ Regen Med 2024; 9:38. [PMID: 39668145 PMCID: PMC11638264 DOI: 10.1038/s41536-024-00377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Many studies have explored different loading and rehabilitation strategies, yet rehabilitation intensity and its impact on the local strain environment and bone healing have largely not been investigated. This study combined implantable strain sensors and subject-specific finite element models in a 2 mm rodent segmental bone defect model. After injury animals were underwent high or low intensity rehabilitation. High intensity rehabilitation increased local strains within the regenerative niche by an average of 44% compared to the low intensity rehabilitation. Finite element modeling demonstrated that resistance rehabilitation significantly increased compressive strain by a factor of 2.0 at week 2 and 4.45 after 4 weeks of rehabilitation. Animals that underwent resistance running had the greatest bone volume and improved functional recovery with regenerated femurs that matched intact failure torque and torsional stiffness values. These results demonstrate the potential for early resistance rehabilitation to improve bone healing.
Collapse
Affiliation(s)
- Kylie E Williams
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Julia Andraca Harrer
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veteran's Affairs Medical Center, Atlanta, GA, USA
| | - Steven A LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 841123, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 841126, USA
| | - Kelly Leguineche
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Jarred Kaiser
- Atlanta Veteran's Affairs Medical Center, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | - Salil Karipott
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Angela Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Alyssa Vongphachanh
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Travis Fulton
- Atlanta Veteran's Affairs Medical Center, Atlanta, GA, USA
| | - J Walker Rosenthal
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Farhan Muhib
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 841123, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 841126, USA
| | - Keat Ghee Ong
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 841123, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 841126, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 841123, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA.
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
3
|
Wähnert D, Miersbach M, Colcuc C, Brianza S, Vordemvenne T, Plecko M, Schwarz A. Promoting bone callus formation by taking advantage of the time-dependent fracture gap strain modulation. Front Surg 2024; 11:1376441. [PMID: 38756355 PMCID: PMC11096559 DOI: 10.3389/fsurg.2024.1376441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Delayed union and non-union of fractures continue to be a major problem in trauma and orthopedic surgery. These cases are challenging for the surgeon. In addition, these patients suffer from multiple surgeries, pain and disability. Furthermore, these cases are a major burden on healthcare systems. The scientific community widely agrees that the stability of fixation plays a crucial role in determining the outcome of osteosynthesis. The extent of stabilization affects factors like fracture gap strain and fluid flow, which, in turn, influence the regenerative processes positively or negatively. Nonetheless, a growing body of literature suggests that during the fracture healing process, there exists a critical time frame where intervention can stimulate the bone's return to its original form and function. This article provides a summary of existing evidence in the literature regarding the impact of different levels of fixation stability on the strain experienced by newly forming tissues. We will also discuss the timing and nature of this "window of opportunity" and explore how current knowledge is driving the development of new technologies with design enhancements rooted in mechanobiological principles.
Collapse
Affiliation(s)
- Dirk Wähnert
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Marco Miersbach
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Christian Colcuc
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | | | - Thomas Vordemvenne
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Michael Plecko
- Department of Orthopaedics and Traumatology, Trauma Hospital Graz (UKH), Graz, Austria
| | - Angelika Schwarz
- Department of Orthopaedics and Traumatology, Trauma Hospital Graz (UKH), Graz, Austria
| |
Collapse
|
4
|
Ratnaparkhi A, Beckett J. Digital Phenotyping, Wearables, and Outcomes. Neurosurg Clin N Am 2024; 35:235-241. [PMID: 38423739 DOI: 10.1016/j.nec.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
There is a significant need for robust and objective outcome assessments in spine surgery. Constant monitoring via smartphones and wearable devices has the potential to fill this role by providing an in-depth picture of human well-being, creating an unprecedented amount of objective data to augment clinical decision-making. The metrics obtained from continuous patient monitoring increase the amount and ecological validity of data relevant to spine surgery. This can provide physicians with patient and disease-specific medical information, facilitating personalized patient care.
Collapse
Affiliation(s)
- Anshul Ratnaparkhi
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles
| | - Joel Beckett
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles; David Geffen School of Medicine, University of California Los Angeles.
| |
Collapse
|
5
|
Pastor T, Zderic I, Berk T, Souleiman F, Vögelin E, Beeres FJP, Gueorguiev B, Pastor T. New generation of superior single plating vs. low-profile dual minifragment plating in diaphyseal clavicle fractures: a biomechanical comparative study. J Shoulder Elbow Surg 2024; 33:409-416. [PMID: 37748530 DOI: 10.1016/j.jse.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and a less prominent and optimized plate-to-bone fit design. On the other hand, minifragment plates in dual plating mode have demonstrated promising clinical results. The aim of the current study was to compare the biomechanical competence of single superior plating using the new-generation plate vs. dual plating using low-profile minifragment plates. METHODS Sixteen paired human cadaveric clavicles were pairwise assigned to 2 groups for instrumentation with either a superior 2.7-mm variable-angle locking compression plate (group 1), or with one 2.5-mm anterior combined with one 2.0-mm superior matrix mandible plate (group 2). An unstable clavicle shaft fracture (AO/OTA 15.2C) was simulated by means of a 5-mm osteotomy gap. Specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis, and monitored via motion tracking. RESULTS Initial construct stiffness was significantly higher in group 2 (9.28 ± 4.40 N/mm) compared to group 1 (3.68 ± 1.08 N/mm), P = .003. The amplitudes of interfragmentary motions in terms of axial and shear displacement, fracture gap opening and torsion, over the course of 12,500 cycles were significantly higher in group 1 compared to group 2, P ≤ .038. Cycles to 2 mm shear displacement were significantly lower in group 1 (22,792 ± 4346) compared to group 2 (27,437 ± 1877), P = .047. CONCLUSION From a biomechanical perspective, low-profile 2.5/2.0-mm dual plates could be considered as a useful alternative for diaphyseal clavicle fracture fixation, especially in less common unstable fracture configurations.
Collapse
Affiliation(s)
- Tatjana Pastor
- AO Research Institute Davos, Davos, Switzerland; Department for Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ivan Zderic
- AO Research Institute Davos, Davos, Switzerland
| | - Till Berk
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Firas Souleiman
- Department of Orthopaedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Esther Vögelin
- Department for Plastic and Hand Surgery, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Frank J P Beeres
- Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | | | - Torsten Pastor
- Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland.
| |
Collapse
|
6
|
Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol 2024; 12:1270237. [PMID: 38328442 PMCID: PMC10847584 DOI: 10.3389/fbioe.2024.1270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application.
Collapse
Affiliation(s)
- Jinzuo Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| | - Jian Chu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jinhui Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
7
|
Heumann M, Benneker LM, Constant C, Ernst M, Richards RG, Wilke HJ, Gueorguiev B, Windolf M. Decreasing implant load indicates spinal fusion when measured continuously. J Biomech 2024; 163:111929. [PMID: 38218695 DOI: 10.1016/j.jbiomech.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Reliable and timely assessment of bone union between vertebrae is considered a key challenge after spinal fusion surgery. Recently, a novel sensor concept demonstrated the ability to objectively assess posterolateral fusion based on continuous implant load monitoring. The aim of this study was to investigate systematically the concept in a mono-segmental fusion model using an updated sensor setup. Three sheep underwent bilateral facetectomy at level L2-L3 and L4-L5. The segments were stabilized using two unconnected pedicle-screw-rod constructs per level. Sensing devices were attached to the rods between each pedicle screw pair and the loads were continuously monitored over 16 weeks. After euthanasia, the spines were biomechanically tested for their range of motion and high-resolution CT scans were performed to confirm the fusion success. After an initial increase in implant load until reaching a maximum (100 %) at approximately week 4, eleven out of twelve sensors measured a constant decrease in implant load to 52 ± 9 % at euthanasia. One sensor measurement was compromised by newly forming bone growing against the sensor clamp. Bridging bone at each facet and minor remnant segmental motion (<0.7°) confirmed the fusion of all motion segments. Data obtained by continuous measurement of implant loading of spinal screw-rod constructs enables objective monitoring of spinal fusion progression. The sensor concept provides valuable real-time information, offering quantifiable data as an alternative to traditional imaging techniques. However, the design of the current sensor concept needs to be matured, tailored to, and validated for the human spine.
Collapse
Affiliation(s)
- Maximilian Heumann
- AO Research Institute Davos, Davos, Switzerland; Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University, Ulm, Germany.
| | | | | | | | | | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University, Ulm, Germany
| | | | | |
Collapse
|
8
|
Williams KE, Andraca Harrer J, LaBelle SA, Leguineche K, Kaiser J, Karipott S, Lin A, Vongphachanh A, Fulton T, Rosenthal JW, Muhib F, Ong KG, Weiss JA, Willett NJ, Guldberg RE. Early Resistance Rehabilitation Improves Functional Regeneration Following Segmental Bone Defect Injury. RESEARCH SQUARE 2023:rs.3.rs-3236150. [PMID: 37886569 PMCID: PMC10602073 DOI: 10.21203/rs.3.rs-3236150/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mechanical loading is integral to bone development and repair. The application of mechanical loads through rehabilitation are regularly prescribed as a clinical aide following severe bone injuries. However, current rehabilitation regimens typically involve long periods of non-loading and rely on subjective patient feedback, leading to muscle atrophy and soft tissue fibrosis. While many pre-clinical studies have focused on unloading, ambulatory loading, or direct mechanical compression, rehabilitation intensity and its impact on the local strain environment and subsequent bone healing have largely not been investigated. This study combines implantable strain sensors and subject-specific finite element models in a pre-clinical rodent model with a defect size on the cusp of critically-sized. Animals were enrolled in either high or low intensity rehabilitation one week post injury to investigate how rehabilitation intensity affects the local mechanical environment and subsequent functional bone regeneration. The high intensity rehabilitation animals were given free access to running wheels with resistance, which increased local strains within the regenerative niche by an average of 44% compared to the low intensity (no-resistance) group. Finite element modeling demonstrated that resistance rehabilitation significantly increased compressive strain by a factor of 2.0 at week 1 and 4.45 after 4 weeks of rehabilitation. The resistance rehabilitation group had significantly increased regenerated bone volume and higher bone bridging rates than its sedentary counterpart (bone volume: 22.00 mm3 ± 4.26 resistance rehabilitation vs 8.00 mm3 ± 2.27 sedentary; bridging rates: 90% resistance rehabilitation vs 50% sedentary). In addition, animals that underwent resistance running had femurs with improved mechanical properties compared to those left in sedentary conditions, with failure torque and torsional stiffness values matching their contralateral, intact femurs (stiffness: 0.036 Nm/deg ± 0.006 resistance rehabilitation vs 0.008 Nm/deg ± 0.006 sedentary). Running on a wheel with no resistance rehabilitation also increased bridging rates (100% no resistance rehabilitation vs 50% sedentary). Analysis of bone volume and von Frey suggest no-resistance rehabilitation may improve bone regeneration and hindlimb functionality. These results demonstrate the potential for early resistance rehabilitation as a rehabilitation regimen to improve bone regeneration and functional recovery.
Collapse
Affiliation(s)
- Kylie E. Williams
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Julia Andraca Harrer
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA
| | - Steven A. LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 841123
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Kelly Leguineche
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Jarred Kaiser
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA
- Emory University, Decatur, GA
| | - Salil Karipott
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Angela Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Alyssa Vongphachanh
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Travis Fulton
- Atlanta Veteran’s Affairs Medical Center, Decatur, GA
| | - J. Walker Rosenthal
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Farhan Muhib
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 841123
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Keat Ghee Ong
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 841123
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 841123
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Nick J. Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| | - Robert E. Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR 97403
| |
Collapse
|
9
|
Viswanathan VK, Jain VK, Sangani C, Botchu R, Iyengar KP, Vaishya R. SMART (self- monitoring analysis and reporting technology) and sensor based technology applications in trauma and orthopaedic surgery. J Orthop 2023; 44:113-118. [PMID: 37767235 PMCID: PMC10520275 DOI: 10.1016/j.jor.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Background Innovations in implant designs and computer technology have led to the development of smart implants and prostheses in the field of orthopedics and trauma. Sensor-guided devices enable close monitoring of physical, chemical and biological environment around the implants, which has been purported to meliorate the intra-operative precision and post-operative surveillance of patients. Objective We evaluate the current applications of sensor-based technology in the management of patients with a spectrum of musculoskeletal conditions. Material and methods A thorough search of literature was performed on May 1, 2023, using the 5 databases (Embase, PubMed, Google Scholar, Cochrane Library and Web of Science) in order to identify suitable studies published between 2000 and 2023. All the studies which reported on SMART implants and Sensor based technology in the diverse sub-specialties of orthopedics like trauma, arthroplasty, spine surgery, infections, arthroscopy or sports medicine and paediatric orthopedics were considered. The keywords used for the search included 'Sensor technology', 'SMART implant' and "Orthopedics". Results Thirty articles were considered for this narrative review. A generation of SMART implants has been developed due to advancements in the microchip technology. Sensor based technology has been utilised in various subspecialties of arthroplasty (in assessing ligament balancing intra-operatively; or prosthetic loosening and gait analysis during follow-up), trauma surgery (as SMART instruments intra-operatively; or in the assessment of bone healing, distraction osteogenesis and functional recovery during follow-up), spine surgery (identification and protection of neural elements from iatrogenic injuries intra-operatively; and assessment of fusion across the instrumented levels during follow-up), paediatric orthopedics (compliance assessment for foot abduction orthosis in congenital talipes equinovarus), infection (monitoring of infection and biofilm formation), rehabilitation (gait analysis) and sports medicine (rotational stability and ligament compliance in patients with ligament injuries or reconstruction). Conclusion SMART implants and Sensor based technology have applications in the surgical planning, intra-operative performance, post-operative monitoring and patient surveillance diverse subspecialties of orthopedics and trauma. Future research in newer designs, cost-effective SMART implants and refinement of Sensor based technology will enhance Patient Related Outcome Measures (PROMs).
Collapse
Affiliation(s)
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Chetan Sangani
- Southport & Ormskirk University Hospital NHS Trust, Southport, PR8 6PN, UK
| | | | - Karthikeyan. P. Iyengar
- Department of Trauma and Orthopaedics, Southport and Ormskirk NHS Trust, Southport, PR8 6PN, UK
| | - Raju Vaishya
- Department of Trauma and Orthopaedics, Apollo Hospital, Indraprastha, New Delhi, India
| |
Collapse
|
10
|
Ramakrishna VAS, Chamoli U, Mukhopadhyay SC, Diwan AD, Prusty BG. Measuring compressive loads on a 'smart' lumbar interbody fusion cage: Proof of concept. J Biomech 2023; 147:111440. [PMID: 36640615 DOI: 10.1016/j.jbiomech.2023.111440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
There are several complications associated with lumbar interbody fusion surgery however, pseudarthrosis (non-union) presents a multifaceted challenge in the postoperative management of the patient. Rates of pseudarthrosis range from 3 to 20 % in patients with healthy bone and 20 to 30 % in patients with osteoporosis. The current methods in post-operative follow-up - radiographs and CT, have high false positive rates and poor agreement between them. The aim of this study was to develop and test a proof-of-concept load-sensing interbody cage that may be used to monitor fusion progression. Piezoresistive pressure sensors were calibrated and embedded within a polyether ether ketone (PEEK) interbody cage. Silicone and poly (methyl methacrylate) (PMMA) were inserted in the graft regions to simulate early and solid fusion. The load-sensing cage was subjected to distributed and eccentric compressive loads up to 900 N between synthetic lumbar vertebral bodies. Under maximum load, the anterior sensors recorded a 56-58 % reduction in pressure in the full fusion state compared to early fusion. Lateral regions measured a 36-37 % stress reduction while the central location reduced by 45 %. The two graft states were distinguishable by sensor-recorded pressure at lower loads. The sensors more effectively detected left and right eccentric loads compared to anterior and posterior. Further, the load-sensing cage was able to detect changes in endplate stiffness. The proof-of-concept 'smart' cage could detect differences in fusion state, endplate stiffness, and loading conditions in this in vitro experimental setup.
Collapse
Affiliation(s)
- Vivek A S Ramakrishna
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Kensington, New South Wales, Australia; Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia.
| | - Uphar Chamoli
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Subhas C Mukhopadhyay
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Spine Service, Department of Orthopaedic Surgery St. George Hospital Campus, Kogarah, New South Wales, Australia
| | - B Gangadhara Prusty
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
11
|
Rothweiler RM, Zankovic S, Brandenburg LS, Fuessinger MA, Gross C, Voss PJ, Metzger MC. Feasibility of Implant Strain Measurement for Assessing Mandible Bone Regeneration. MICROMACHINES 2022; 13:1602. [PMID: 36295956 PMCID: PMC9610677 DOI: 10.3390/mi13101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nonunion is one of the most dreaded complications after operative treatment of mandible fractures or after mandible reconstruction using vascularized and non-vascularized bone grafts. Often diagnosis is made at advanced stage of disease when pain or complications occur. Devices that monitor fracture healing and bone regeneration continuously are therefore urgently needed in the craniomaxillofacial area. One promising approach is the strain measurement of plates. An advanced prototype of an implantable strain measurement device was tested after fixation to a locking mandible reconstruction plate in multiple compression experiments to investigate the potential functionality of strain measurement in the mandibular region. Compression experiments show that strain measurement devices work well under experimental conditions in the mandibular angle and detect plate deformation in a reliable way. For monitoring in the mandibular body, the device used in its current configuration was not suitable. Implant strain measurement of reconstruction plates is a promising methodical approach for permanent monitoring of bone regeneration and fracture healing in the mandible. The method helps to avoid or detect complications at an early point in time after operative treatment.
Collapse
Affiliation(s)
- René Marcel Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sergej Zankovic
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| | - Leonard Simon Brandenburg
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc-Anton Fuessinger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Pit Jacob Voss
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc-Christian Metzger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|