1
|
Cehofski LJ, Kruse A, Mæng MO, Kjaergaard B, Sejergaard BF, Schlosser A, Sorensen GL, Honoré B, Vorum H. Complement C3 is downregulated following ranibizumab intervention in experimental central retinal vein occlusion. Mol Vis 2024; 30:268-277. [PMID: 39563678 PMCID: PMC11575839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/01/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose Ranibizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the treatment of macular edema following central retinal vein occlusion (CRVO). Studying proteins that mediate the beneficial effects of ranibizumab in CRVO can potentially lead to the improved management of macular edema. Methods In 14 Danish Landrace pigs, experimental CRVO was induced in the right eyes and treated with either intravitreal ranibizumab (n = 6) or an intravitreal sodium chloride 9 mg/mL solution as a sham injection (n = 8). Successful CRVO was confirmed by fluorescein angiography. Retinal samples were collected 15 days after induced CRVO and analyzed with label-free, quantification, nano-liquid chromatography-tandem mass spectrometry. Validation was performed with western blotting and immunohistochemistry. Results CRVO was successfully induced and confirmed by fluorescein angiography. A total of 28 proteins were upregulated, and 31 proteins were downregulated following ranibizumab treatment. A high concentration of the ranibizumab component immunoglobulin kappa chain C region was observed in retinas treated with ranibizumab. Complement C3, the Ig lambda chain C region, and nucleobindin-2 were downregulated following ranibizumab intervention. The downregulation of complement C3 was confirmed by western blotting. Modest changes were observed in the remaining significantly regulated proteins. Conclusions Retinal complement C3 was downregulated following ranibizumab intervention in CRVO. The decrease in complement C3 may potentially downregulate the inflammatory response in CRVO. A high retinal concentration of ranibizumab was reached 15 days after injection of the compound.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Mads Odgaard Mæng
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Benedict Kjaergaard
- Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark
| | | | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg University Hospital
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg University Hospital
| |
Collapse
|
2
|
McAllister IL, Vijayasekaran S, McLenachan S, Bhikoo R, Chen FK, Zhang D, Kanagalingam E, Yu DY. Cytokine Levels in Experimental Branch Retinal Vein Occlusion Treated With Either Bevacizumab or Triamcinolone Acetonide. Transl Vis Sci Technol 2024; 13:13. [PMID: 38899953 PMCID: PMC11193067 DOI: 10.1167/tvst.13.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose To compare gene expression changes following branch retinal vein occlusion (BRVO) in the pig with and without bevacizumab (BEV) and triamcinolone acetonide (TA). Methods Photothrombotic BRVOs were created in both eyes of four groups of nine pigs (2, 6, 10, and 20 days). In each group, six pigs received intravitreal injections of BEV in one eye and TA in the fellow eye, with three pigs serving as untreated BRVO controls. Three untreated pigs served as healthy controls. Expression of mRNA of vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), dystrophin (DMD), potassium inwardly rectifying channel subfamily J member 10 protein (Kir4.1, KCNJ10), aquaporin-4 (AQP4), stromal cell-derived factor-1α (CXCL12), interleukin-6 (IL6), interleukin-8 (IL8), monocyte chemoattractant protein-1 (CCL2), intercellular adhesion molecule 1 (ICAM1), and heat shock factor 1 (HSF1) were analyzed by quantitative reverse-transcription polymerase chain reaction. Retinal VEGF protein levels were characterized by immunohistochemistry. Results In untreated eyes, BRVO significantly increased expression of GFAP, IL8, CCL2, ICAM1, HSF1, and AQP4. Expression of VEGF, KCNJ10, and CXCL12 was significantly reduced by 6 days post-BRVO, with expression recovering to healthy control levels by day 20. Treatment with BEV or TA significantly increased VEGF, DMD, and IL6 expression compared with untreated BRVO eyes and suppressed BRVO-induced CCL2 and AQP4 upregulation, as well as recovery of KCNJ10 expression, at 10 to 20 days post-BRVO. Conclusions Inflammation and cellular osmohomeostasis rather than VEGF suppression appear to play important roles in BRVO-induced retinal neurodegeneration, enhanced in both BEV- and TA-treated retinas. Translational Relevance Inner retinal neurodegeneration seen in this acute model of BRVO appears to be mediated by inflammation and alterations in osmohomeostasis rather than VEGF inhibition, which may have implications for more specific treatment modalities in the acute phase of BRVO.
Collapse
Affiliation(s)
- Ian L. McAllister
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sarojini Vijayasekaran
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Riyaz Bhikoo
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Emily Kanagalingam
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Omenn GS, Lane L, Overall CM, Lindskog C, Pineau C, Packer NH, Cristea IM, Weintraub ST, Orchard S, Roehrl MHA, Nice E, Guo T, Van Eyk JE, Liu S, Bandeira N, Aebersold R, Moritz RL, Deutsch EW. The 2023 Report on the Proteome from the HUPO Human Proteome Project. J Proteome Res 2024; 23:532-549. [PMID: 38232391 PMCID: PMC11026053 DOI: 10.1021/acs.jproteome.3c00591] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | - Christopher M. Overall
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada, Yonsei University Republic of Korea
| | | | - Charles Pineau
- University Rennes, Inserm U1085, Irset, 35042 Rennes, France
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | | | - Michael H. A. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | | | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Pavilion, 9th Floor, Los Angeles, CA, 90048, United States
| | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
- University of Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
4
|
Cehofski LJ, Kruse A, Mæng MO, Kjaergaard B, Grauslund J, Honoré B, Vorum H. Proteome Analysis of Bevacizumab Intervention in Experimental Central Retinal Vein Occlusion. J Pers Med 2023; 13:1580. [PMID: 38003895 PMCID: PMC10672637 DOI: 10.3390/jpm13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bevacizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the management of macular edema in central retinal vein occlusion (CRVO). Studying retinal protein changes in bevacizumab intervention may provide insights into mechanisms of action. In nine Danish Landrace pigs, experimental CRVO was induced in both eyes with argon laser. The right eyes received an intravitreal injection of 0.05 mL bevacizumab (n = 9), while the left control eyes received 0.05 mL saline water (NaCl). Retinal samples were collected 15 days after induced CRVO. Label-free quantification nano-liquid chromatography-tandem mass spectrometry identified 59 proteins that were regulated following bevacizumab treatment. Following bevacizumab intervention, altered levels of bevacizumab components, including the Ig gamma-1 chain C region and the Ig kappa chain C region, were observed. Changes in other significantly regulated proteins ranged between 0.58-1.73, including for the NADH-ubiquinone oxidoreductase chain (fold change = 1.73), protein-transport protein Sec24B (fold change = 1.71), glycerol kinase (fold change = 1.61), guanine-nucleotide-binding protein G(T) subunit-gamma-T1 (fold change = 0.67), and prefoldin subunit 6 (fold change = 0.58). A high retinal concentration of bevacizumab was achieved within 15 days. Changes in the additional proteins were limited, suggesting a narrow mechanism of action.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark;
- Biomedical Research Laboratory, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark; (A.K.); (M.O.M.)
| | - Mads Odgaard Mæng
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark; (A.K.); (M.O.M.)
| | - Benedict Kjaergaard
- Biomedical Research Laboratory, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Henrik Vorum
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|