Loperfido A, Cavaliere C, Fionda B, Masieri S, Bellocchi G, Re M, Tomasetti M. The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside.
Genes (Basel) 2025;
16:295. [PMID:
40149447 PMCID:
PMC11942466 DOI:
10.3390/genes16030295]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES
MicroRNAs (miRNAs) play a crucial role in regulating immune responses and have been implicated in the pathogenesis of various nasal diseases, including chronic rhinosinusitis (CRS), allergic rhinitis (AR), and sinonasal tumors. This review comprehensively explores the emerging role of miRNAs in inflammatory and oncological nasal diseases, highlighting their diagnostic, prognostic, and therapeutic potential.
METHODS
A comprehensive review of the literature was conducted to summarize current findings on miRNA expression in nasal inflammatory conditions and tumors. Key studies evaluating miRNA-mediated regulatory mechanisms, potential biomarker applications, and therapeutic approaches were analyzed.
RESULTS
Altered miRNA expression profiles contribute to the pathogenesis of CRS, AR, and sinonasal tumors. Specific miRNAs, such as miR-125b and miR-155 are upregulated in CRS and AR, promoting inflammation and tissue remodeling. In sinonasal tumors, dysregulated miRNAs, including miR-126 and miR-34/miR-449 clusters, influence tumor progression and therapeutic response. Exosome-mediated miRNA delivery emerges as a promising avenue for precision medicine, offering novel strategies for miRNA-based diagnostics and therapies.
CONCLUSIONS
miRNAs are key regulators of nasal diseases, with potential applications in non-invasive diagnostics and targeted therapies. Further research into miRNA-based interventions may improve treatment outcomes and contribute to the development of personalized medicine approaches for nasal inflammatory disorders and malignancies.
Collapse