1
|
Garcia-Ovejero D, Beyerer E, Mach O, Leister I, Strowitzki M, Wutte C, Maier D, Kramer JL, Aigner L, Arevalo-Martin A, Grassner L. Untargeted blood serum proteomics identifies novel proteins related to neurological recovery after human spinal cord injury. J Transl Med 2024; 22:666. [PMID: 39020346 PMCID: PMC11256486 DOI: 10.1186/s12967-024-05344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Evelyn Beyerer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Christof Wutte
- Department of Neurosurgery, BG Trauma Center, Murnau, Germany
| | - Doris Maier
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - John Lk Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany.
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria.
- Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
3
|
Rycyk-Bojarzyńska A, Kasztelan-Szczerbińska B, Cichoż-Lach H, Surdacka A, Roliński J. Human Neutrophil Alpha-Defensins Promote NETosis and Liver Injury in Alcohol-Related Liver Cirrhosis: Potential Therapeutic Agents. J Clin Med 2024; 13:1237. [PMID: 38592082 PMCID: PMC10931661 DOI: 10.3390/jcm13051237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Neutrophils are thought to play a pivotal role in the pathogenesis of many inflammatory diseases, such as hepatitis, liver cirrhosis, etc. Activated human neutrophils release human neutrophil peptides (HNP1-3) or alpha-defensins that are antimicrobial peptides in azurophil granules. Furthermore, HNP1-3 build a scaffold of neutrophil extracellular traps (NETs) and promote the process of programmed cell death called NETosis. Our study aimed to investigate the role of alpha-defensins in the pathogenesis of alcohol-related liver cirrhosis (ALC). Methods: The concentrations of alpha-defensins in the plasma of 62 patients with ALC and 24 healthy subjects were measured by ELISA. The patients with ALC were prospectively recruited based on the severity of liver dysfunction according to the Child-Pugh and Model of End-Stage Liver Disease-Natrium (MELD-Na) scores, modified Maddrey's Discriminant Function (mDF), and the presence of ALC complications. Results: The concentrations of alpha-defensins in plasma were significantly higher in the ALC patients than in the controls. The plasma levels of HNP1-3 correlated with the MELD and mDF scores. ALC subgroups with MELD > 20 and mDF > 32 displayed significantly higher HNP1-3 concentrations. The plasma levels of HNP1-3 revealed a good predictive AUC for hepatic encephalopathy and ascites development (0.81 and 0.74, respectively) and for patient survival (0.87) in those over 40 years of age. Conclusion: These findings suggest that alpha-defensins play an important role in the assessment of ALC.
Collapse
Affiliation(s)
- Anna Rycyk-Bojarzyńska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Beata Kasztelan-Szczerbińska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Agata Surdacka
- Department of Clinical Immunology, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.); (J.R.)
| |
Collapse
|
4
|
Takenoya F, Shibato J, Yamashita M, Kimura A, Hirako S, Chiba Y, Nonaka N, Shioda S, Rakwal R. Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide). Int J Mol Sci 2023; 24:15825. [PMID: 37958806 PMCID: PMC10648535 DOI: 10.3390/ijms242115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376.
Collapse
Affiliation(s)
- Fumiko Takenoya
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan; (F.T.); (M.Y.); (A.K.)
| | - Junko Shibato
- Department of Functional Morphology, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan; (J.S.); (S.S.)
| | - Michio Yamashita
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan; (F.T.); (M.Y.); (A.K.)
| | - Ai Kimura
- Department of Sport Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan; (F.T.); (M.Y.); (A.K.)
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama 339-8539, Japan;
| | - Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan;
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo 142-8555, Japan;
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan; (J.S.); (S.S.)
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| |
Collapse
|