1
|
Gerritse M, van Ham WB, Denning C, van Veen TAB, Maas RGC. Characteristics and pharmacological responsiveness in hiPSC models of inherited cardiomyopathy. Pharmacol Ther 2025:108845. [PMID: 40250811 DOI: 10.1016/j.pharmthera.2025.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/20/2025]
Abstract
Inherited cardiomyopathies are a major cause of heart failure in all age groups, often with an onset in adolescence or early adult life. More than a thousand variants in approximately one hundred genes are associated with cardiomyopathies. Interestingly, many genetic cardiomyopathies display overlapping phenotypical defects in patients, despite the diversity of the initial pathogenic variants. Understanding how the underlying pathophysiology of genetic cardiomyopathies leads to these phenotypes, will improve insights into a patient's disease course and creates the opportunity for conceiving treatment strategies. Moreover, therapeutic strategies can be used to treat multiple cardiomyopathies based on shared phenotypes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer reliable, high-throughput models for studying molecular and cellular characteristics of hereditary cardiomyopathies. hiPSC-CMs are produced relatively easily, either by directly originating them from patients, or by introducing patient-specific genetic variants in healthy lines. This review evaluates 90 studies on 24 cardiomyopathy-associated genes and systematically summarises the morphological and functional phenotypes observed in hiPSC-CMs. Additionally, treatment strategies applied in cardiomyopathic hiPSC-CMs are compiled and scored for effectiveness. Multiple overlapping phenotypic defects were identified in cardiomyocytes with different variants, whereas certain characteristics were only associated with specific genetic variants. Based on these findings, common mechanisms, therapeutic prospects, and considerations for future research are discussed with the aim to improve clinical translation from hiPSC-CMs to patients.
Collapse
Affiliation(s)
- Merel Gerritse
- Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Utrecht, 3584 CS Utrecht, the Netherlands; Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands.
| | - Willem B van Ham
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands.
| | - Chris Denning
- Department of Stem Cell Biology, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Toon A B van Veen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands.
| | - Renee G C Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Utrecht, 3584 CS Utrecht, the Netherlands; Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
2
|
Johnson N, Qi B, Wen J, Du B, Banerjee S. KLHL24 associated cardiomyopathy: Gene function to clinical management. Gene 2025; 939:149185. [PMID: 39708934 DOI: 10.1016/j.gene.2024.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND KLHL24 (Kelch-like protein 24) is a significant component of the ubiquitin-proteasome system (UPS), involved in regulating protein turnover through targeted ubiquitination and degradation. Germline mutations in KLHL24 gene have been known to cause Epidermolysis Bullosa Simplex characterized by skin fragility but has recently been found to cause Cardiomyopathy. MAIN BODY Various cardiomyopathies, including hypertrophic cardiomyopathy and dilated cardiomyopathy, leading to abnormal protein degradation and affecting the stability and function of essential cardiac proteins which finally results into structural and functional abnormalities in cardiac muscle. In this review, in order to understand the disease association of germline mutations of KLHL24, we summarize all the studies performed with KLHL24 gene including studies from 2016 when KLHL24 was first identified to be associated with epidermolysis bullosa simplex till the recent studies in 2024 by using keywords such as KLHL24 gene, hypertrophic cardiomyopathy, dilated cardiomyopathy and epidermolysis bullosa simplex. Furthermore, we explored the proposed molecular mechanisms and pathophysiologies of KLHL24 associated diseases. Patients with KLHL24 mutations were usually presented with variable clinical symptoms. The main clinical presentations have been cutaneous lesions, cardiac symptoms associated with cardiomyopathies and there have been reports of skeletal muscle weakness and neurological symptoms as well. Current treatments focus on managing clinical symptoms and preventing complications through medications, lifestyle changes, and surgical interventions. In addition, researches have also been conducted cell culture based in vitro studies for reducing the clinical symptoms of KLHL24 associated diseases. However, currently there are no specific clinical trials going on regarding the therapeutic strategies among patients with KLHL24 mutations. Understanding the role of KLHL24 in cardiomyopathies is very important for developing targeted diagnostic approach with therapeutic strategies. CONCLUSION This review emphasizes the importance of KLHL24 mutations as a newly recognized cause of cardiomyopathy, paving the way for improved clinical diagnosis, targeted therapies, and ultimately, for better patient outcomes.
Collapse
Affiliation(s)
- Neil Johnson
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China; Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
Ding D, Zhao G. KLF9 aggravates the cardiomyocyte hypertrophy in hypertrophic obstructive cardiomyopathy through the lncRNA UCA1/p27 axis. Int J Exp Pathol 2025; 106:e12526. [PMID: 39909852 PMCID: PMC11798666 DOI: 10.1111/iep.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
Cardiac hypertrophy refers to an abnormal increase in the thickness of the heart muscle. Our study explores the role of Krüppel-like factor 9 (KLF9) in hypertrophic obstructive cardiomyopathy (HOCM)-induced cardiomyocyte hypertrophy, providing new targets for the treatment of HOCM. Cardiomyocytes were treated with isoproterenol (ISO). The levels of natriuretic peptide B (BNP)/natriuretic peptide A (ANP)/KLF9/long non-coding RNA urothelial carcinoma-associated 1 (lncRNA UCA1)/p27 were measured. Cell surface area and protein/DNA ratio were tested. The binding between KLF9 and the lncRNA UCA1 promoter and between zeste homologue 2 (EZH2) and lncRNA UCA1 was verified. The enrichment of histone H3 lysine 27 tri-methylation (H3K27me3) and EZH2 on the p27 promoter was analysed. ISO treatment increased KLF9 and lncRNA UCA1 expression and decreased p27 expression in cardiomyocytes. KLF9 knockdown inhibited ISO-induced cardiomyocyte hypertrophy, reduced ANP and BNP expression, and alleviated cardiomyocyte damage. KLF9 activated lncRNA UCA1 expression. LncRNA UCA1 recruited EZH2 to the p27 promoter region, increasing the enrichment of H3K27me3, thereby epigenetically suppressing p27 expression. LncRNA UCA1 overexpression or p27 downregulation reduced the protective effect of KLF9 downregulation on cardiomyocyte hypertrophy. In conclusion, KLF9 activates lncRNA UCA1 expression, and lncRNA UCA1 epigenetically suppresses p27 expression, thereby exacerbating cardiomyocyte hypertrophy in HOCM.
Collapse
Affiliation(s)
- Dayou Ding
- School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Guangrong Zhao
- School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| |
Collapse
|
4
|
Sukhacheva TV, Serov RA, Kim AI, Podzolkov VP, Bockeria LA. Patterns of Increased Cardiomyocyte Ploidy in Myocardial Hypertrophy of Various Origins. Bull Exp Biol Med 2025; 178:301-306. [PMID: 39948178 DOI: 10.1007/s10517-025-06325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 02/28/2025]
Abstract
An increase in the ploidy of cardiomyocytes (CMCs) determines the potential for their hypertrophic growth. We analyzed the changes in CMC ploidy and size of the interventricular septum in patients with hypertrophic cardiomyopathy (HCM) and tetralogy of Fallot (TF). The ploidy of CMCs in children and adult patients with HCM and children with TF was 1.5-2-fold higher than in individuals without cardiovascular pathology, and it did not change with age. The size of the CMCs was also larger by 1.3-2 times in patients with HCM and TF, compared to the control groups. However, the increase in CMCs size was more significant in HCM than in TF. The proportion of multinucleated CMCs was significantly lower in patients with HCM compared to controls and was by almost 2 times higher in patients with TF. Thus, myocardial hypertrophy in HCM is mainly due to the polyploidy of mononucleated CMCs, whereas in TF, the proportion of multinucleated CMCs increases.
Collapse
Affiliation(s)
- T V Sukhacheva
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia.
- Petrovsky National Research Centre of Surgery, Moscow, Russia.
| | - R A Serov
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A I Kim
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Podzolkov
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L A Bockeria
- A. N. Bakulev Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Almadani A, Sarwar A, Agu E, Ahluwalia M, Kpodonu J. HCM-Echo-VAR-Ensemble: Deep Ensemble Fusion to Detect Hypertrophic Cardiomyopathy in Echocardiograms. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:193-201. [PMID: 39698121 PMCID: PMC11655110 DOI: 10.1109/ojemb.2024.3486541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024] Open
Abstract
Goal: To detect Hypertrophic Cardiomyopathy (HCM) from multiple views of Echocardiogram (cardiac ultrasound) videos. Methods: we propose HCM-Echo-VAR-Ensemble, a novel framework that performs binary classification (HCM vs. no HCM) of echocardiogram videos directly using an ensemble of state-of-the-art deep VAR architectures models (SlowFast and I3D), and fuses their predictions using majority averaging ensembling. Results: HCM-Echo-VAR-Ensemble achieved state-of-the-art accuracy of 95.28%, an F1-Score of 95.20%, a specificity of 96.20%, a sensitivity of 93.97%, a PPV of 96.46%, an NPV of 94.17%, and an AUC of 98.42%, outperforming a comprehensive set of baselines including other ensembling approaches. Conclusions: Our proposed HCM-Echo-VAR-Ensemble framework demonstrates significant potential for improving the sensitivity and accuracy of HCM detection in clinical settings, particularly by ensembling the complementary strengths of the SlowFast and I3D deep VAR models. This approach can enhance diagnostic consistency and accuracy, enabling reliable HCM diagnoses even in low-resource environments.
Collapse
Affiliation(s)
- Abdulsalam Almadani
- Data Science ProgramWorcester Polytechnic InstituteWorcesterMA01609USA
- College of Computer and Information SciencesImam Mohammad Ibn Saud Islamic UniversityRiyadh13318Saudi Arabia
| | - Atifa Sarwar
- Computer Science DepartmentWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Emmanuel Agu
- Computer Science DepartmentWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Monica Ahluwalia
- Medical Director of Inherited Cardiac Diseases ProgramDivision of Cardiovascular Medicine, Boston Medical CenterBostonMA02118USA
- Brigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jacques Kpodonu
- Division of Cardiac Surgery, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
6
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
7
|
Jacob S, Abuarja T, Shaath R, Hasan W, Balayya S, Abdelrahman D, Almana K, Afreen H, Hani A, Nomikos M, Fakhro K, Elrayess MA, Da'as SI. Deciphering metabolomics and lipidomics landscape in zebrafish hypertrophic cardiomyopathy model. Sci Rep 2024; 14:21902. [PMID: 39300306 DOI: 10.1038/s41598-024-72863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
To elucidate the lipidomic and metabolomic alterations associated with hypertrophic cardiomyopathy (HCM) pathogenesis, we utilized cmybpc3-/- zebrafish model. Fatty acid profiling revealed variability of 10 fatty acids profiles, with heterozygous (HT) and homozygous (HM) groups exhibiting distinct patterns. Hierarchical cluster analysis and multivariate analyses demonstrated a clear separation of HM from HT and control (CO) groups related to cardiac remodeling. Lipidomic profiling identified 257 annotated lipids, with two significantly dysregulated between CO and HT, and 59 between HM and CO. Acylcarnitines and phosphatidylcholines were identified as key contributors to group differentiation, suggesting a shift in energy source. Untargeted metabolomics revealed 110 and 53 significantly dysregulated metabolites. Pathway enrichment analysis highlighted perturbations in multiple metabolic pathways in the HM group, including nicotinate, nicotinamide, purine, glyoxylate, dicarboxylate, glycerophospholipid, pyrimidine, and amino acid metabolism. Our study provides comprehensive insights into the lipidomic and metabolomic unique signatures associated with cmybpc3-/- induced HCM in zebrafish. The identified biomarkers and dysregulated pathways shed light on the metabolic perturbations underlying HCM pathology, offering potential targets for further investigation and potential new therapeutic interventions.
Collapse
Affiliation(s)
- Shana Jacob
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Tala Abuarja
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Rulan Shaath
- Research Department, Sidra Medicine, Doha, 26999, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Waseem Hasan
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | | | | | - Khalid Almana
- Department of Biochemistry, Swansea University, SA1 8EN, Swansea, UK
| | - Hajira Afreen
- Department of Biological Sciences, Qatar University, Doha, 2713, Qatar
| | - Ahmad Hani
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Khalid Fakhro
- Research Department, Sidra Medicine, Doha, 26999, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
- Weill Cornell Medical College, Doha, 24144, Qatar
| | - Mohamed A Elrayess
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Sahar Isa Da'as
- Research Department, Sidra Medicine, Doha, 26999, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar.
| |
Collapse
|
8
|
Menezes Junior ADS, de França-e-Silva ALG, de Oliveira HL, de Lima KBA, Porto IDOP, Pedroso TMA, Silva DDME, Freitas AF. Genetic Mutations and Mitochondrial Redox Signaling as Modulating Factors in Hypertrophic Cardiomyopathy: A Scoping Review. Int J Mol Sci 2024; 25:5855. [PMID: 38892064 PMCID: PMC11173352 DOI: 10.3390/ijms25115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heart condition characterized by cellular and metabolic dysfunction, with mitochondrial dysfunction playing a crucial role. Although the direct relationship between genetic mutations and mitochondrial dysfunction remains unclear, targeting mitochondrial dysfunction presents promising opportunities for treatment, as there are currently no effective treatments available for HCM. This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. Searches were conducted in databases such as PubMed, Embase, and Scopus up to September 2023 using "MESH terms". Bibliographic references from pertinent articles were also included. Hypertrophic cardiomyopathy (HCM) is influenced by ionic homeostasis, cardiac tissue remodeling, metabolic balance, genetic mutations, reactive oxygen species regulation, and mitochondrial dysfunction. The latter is a common factor regardless of the cause and is linked to intracellular calcium handling, energetic and oxidative stress, and HCM-induced hypertrophy. Hypertrophic cardiomyopathy treatments focus on symptom management and complication prevention. Targeted therapeutic approaches, such as improving mitochondrial bioenergetics, are being explored. This includes coenzyme Q and elamipretide therapies and metabolic strategies like therapeutic ketosis. Understanding the biomolecular, genetic, and mitochondrial mechanisms underlying HCM is crucial for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Ana Luísa Guedes de França-e-Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Henrique Lima de Oliveira
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Khissya Beatryz Alves de Lima
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Iane de Oliveira Pires Porto
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Thays Millena Alves Pedroso
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Daniela de Melo e Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Aguinaldo F. Freitas
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| |
Collapse
|
9
|
Chen P, Yawar W, Farooqui AR, Ali S, Lathiya N, Ghous Z, Sultan R, Alhomrani M, Alghamdi SA, Almalki AA, Alghamdi AA, ALSuhaymi N, Razi Ul Islam Hashmi M, Hameed Y. Transcriptomics data integration and analysis to uncover hallmark genes in hypertrophic cardiomyopathy. Am J Transl Res 2024; 16:637-653. [PMID: 38463581 PMCID: PMC10918138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease that mainly affects the myocardium. In the current study, we aim to explore HCM-related hub genes through the analysis of differentially expressed genes (DEGs) between HCM and normal sample groups. METHODS The GSE68316 and GSE36961 expression profiles were obtained from the Gene Expression Omnibus (GEO) database for the identification of DEGs, to explore hub genes, and to perform their expression analysis. Clinical HCM and control tissue samples were taken for expression and promoter methylation validation analysis via RNA-sequencing (RNA-seq) and targeted bisulfite sequencing (bisulfite-seq) analyses. Then, other different bioinformatics tools were employed to perform STRING, lncRNA-miRNA-mRNA regulatory networks, gene enrichment, and drug prediction analyses. RESULTS In total, the top 20 DEGs, including 10 up-regulated and 10 down-regulated, were obtained from GSE68316. Out of the 20 DEGs, we subsequently identified the 8 most important hub genes including 5 up-regulated genes (EPB42, UQCRH, CA1, PFDN5, and LSM5) and 3 down-regulated genes (RPS24, TNS1, and RPL26). Expression and promoter methylation dysregulation of these genes were further validated on clinical HCM samples paired with controls. Next, we further investigated hub genes' regulatory 6 miRNAs (has-mir-1-3p, has-mir-129-5p, has-mir-16-5p, has-mir-23b-3p, has-mir-27-3p, and has-mir-182-5p) and miRNAs regulatory 4 lncRNAs (NUTMB2-AS1, NEAT1, XIST, and GABPB1-AS1) in this study via the lncRNA-cricRNA-miRNA-mRNA regulatory network. Later on, gene enrichment analysis revealed that hub genes were enriched in various important pathways including Nitrogen metabolism, Ribosome, RNA degradation, Cardiac muscle contraction, and Coronavirus disease, etc. Finally, the drug prediction analysis highlighted different potential candidate drugs for altering the expression of hub genes in the treatment of HCM. CONCLUSION In summary, the identification of key hub genes and their enrichment analysis in the current study may shed light on the mechanisms behind the occurrence and development of HCM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Cardiovascular Medicine, Taiyuan Central HospitalTaiyuan 030000, Shanxi, China
| | - Warda Yawar
- Department of Emergency, PPHISindh, Karachi 74800, Pakistan
| | | | - Saqib Ali
- Department of Computer Science, University of AgricultureFaisalabad 38040, Pakistan
| | - Nida Lathiya
- Department of Physiology, Jinnah Medical and Dental College, Sohail UniversityKarachi 74800, Pakistan
| | - Zeeshan Ghous
- Department of Cardiology, Punjab Institute of CardiologyLahore 54000, Pakistan
| | - Rizwana Sultan
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal SciencesBahawalpur, Pakistan
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
- Research Centre for Health Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Naif ALSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences - AlQunfudah, Umm Al-Qura UniversityMekkah, Saudi Arabia
| | | | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry Biotechnology and Bioinformatics, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| |
Collapse
|