1
|
Sukhrobov P, Li J, Tang D, Numonov S, Aisa HA. Phenolic compounds from the aerial parts of Artemisia vachanica Krasch. ex Poljakov. Fitoterapia 2025; 182:106438. [PMID: 39952615 DOI: 10.1016/j.fitote.2025.106438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
A pair of undescribed enantiomers of phenolic compound bearing a rare oxetane moiety, (±)-vachanin L [(±)-1], and an undescribed monoterpene, vachanin M (2), along with fifteen known compounds including a monoterpene (3), a diterpene (4), seven flavonoids (5-11) and six lignan analogs (12-17) were isolated from the aerial parts of Artemisia vachanica Krasch. ex Poljakov. Their structures were identified based on HR-ESI-MS and NMR spectroscopy techniques. Relative configuration of vachanin L (1) was established by 13C NMR calculations and DP4+ probability analysis, and absolute configurations of (±)-vachanin L [(±)-1] and vachanin M (2) were successfully confirmed by ECD calculations and X-ray diffraction analysis. Compound 4 exhibited significant cytotoxic activity against MCF7, HT29 and Hela cell lines with IC50 values of 23.20 μM, 27.69 μM and 36.93 μM, respectively.
Collapse
Affiliation(s)
- Parviz Sukhrobov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Dushanbe 734063, Tajikistan
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Tang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Sodik Numonov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Dushanbe 734063, Tajikistan
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Sukhrobov P, Li J, Liu L, Numonov S, Aisa HA. Sesquiterpenes from the aerial parts of Artemisia vachanica krasch. ex poljakov and their anti-inflammatory and anti-diabetic activities. PHYTOCHEMISTRY 2025; 230:114317. [PMID: 39515628 DOI: 10.1016/j.phytochem.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Eleven undescribed sesquiterpenes, vachanins A-K covering types of germacrane, eudesmane, guaiacane, and cadinane, along with fifteen known analogs were isolated from the aerial parts of Artemisia vachanica Krasch. ex Poljakov. Their structures were established on the basis of HRMS and NMR data, and their absolute configurations were successfully determined by single-crystal X-ray diffraction analysis, 13C-NMR calculations and DP4+ probability analysis, and ECD data in corporation with quantum chemical calculations. Vachanin A is the first example of germacrane bearing an uncommon C5, C10-oxygen bridge. All isolated compounds were assayed for anti-inflammatory and anti-diabetic activities. Compounds 15 and 22 presented weak anti-inflammatory activity by inhibiting the release of NO in RAW 264.7 cells induced by LPS with IC50 values of 42.82 ± 1.43, and 63.37 ± 3.28 μM.
Collapse
Affiliation(s)
- Parviz Sukhrobov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Dushanbe, 734063, Tajikistan.
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Sodik Numonov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Dushanbe, 734063, Tajikistan
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and The Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
3
|
Das G, Shin HS, Patra JK. The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Curr Issues Mol Biol 2024; 46:12099-12118. [PMID: 39590312 PMCID: PMC11593081 DOI: 10.3390/cimb46110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Artemisinin is a truly fascinating drug in many ways. Since the unrestrained procedure of its detection, as an antimalarial drug, artemisinin has received a great deal of consideration. Recently, application of artemisinin-based combination therapy has been broadly applied for treating numerous ailments. Moreover, as an antimalarial compound, artemisinin and its associated compounds have abundant healing efficacy and can be repurposed for additional symptoms, like autoimmune infections, cancer, and viral contaminations. Recently a number of studies have highlighted the significance of the artemisinin-related compounds in SARS-CoV-2 treatment. The current review purposes to present a concise account of the history of the antiviral and antimalarial prodrugs-Artemisinin, from the Artemisia species. It is followed by its antiviral, antimalarial prospective, chemical nature and extraction procedure, photochemistry, mechanism of action, and its clinical trials and patents, and accentuates the significance of the mechanistic studies concerned for therapeutic results, both in viral and malarial circumstances.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| |
Collapse
|
4
|
Ahmad T, Kadam P, Bhiyani G, Ali H, Akbar M, Siddique MUM, Shahid M. Artemisia pallens W. Attenuates Inflammation and Oxidative Stress in Freund's Complete Adjuvant-Induced Rheumatoid Arthritis in Wistar Rats. Diseases 2024; 12:230. [PMID: 39452473 PMCID: PMC11508142 DOI: 10.3390/diseases12100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic effect of a methanolic extract of Artemisia pallens (methanolic extract of A. pallens, MEAP), an aromatic herb. Artemisinin content (% per dry weight of the plant) was estimated using a UV Vis spectrophotometer. In the present study, animals were divided into six groups (n = 6). The control group (group I) was injected with 0.25% of carboxymethyl cellulose. The arthritic control group (group II) was treated with Freund's complete adjuvant (by injecting 0.1 mL). Prednisolone (10 mg/kg), a lower dose of MEAP (100 mg/kg), a medium dose of MEAP (200 mg/kg), and a higher dose of MEAP (400 mg/kg) were orally delivered to groups III, IV, V, and VI, respectively. Freund's complete adjuvant was administered into the sub-plantar portion of the left-hind paw in all the groups except vehicle control to induce rheumatoid arthritis. Weight variation; joint diameter; paw volume; thermal and mechanical hyperalgesia; hematological, biochemical, and oxidative stress parameters; radiology; and a histopathological assessment of the synovial joint were observed in order to evaluate the antiarthritic effect of the methanolic extract of A. pallens. In this study, the estimated content of artemisinin was found to be 0.28% (per dry weight of the plant), which was in good agreement with the reported value. MEAP (200 and 400 mg/kg) caused a significant reduction in increased paw volume and joint diameter in arthritic rats while significantly increasing body weight and the mechanical threshold of thermal algesia. Moreover, complete blood counts and serum enzyme levels improved significantly. Radiological analysis showed a reduction in soft tissue swelling and small erosions. A histopathological examination of the cells revealed reduced cell infiltration and the erosion of joint cartilage in MEAP-administered arthritic rats. The present research suggests that the antiarthritic activity of the methanolic extract of A. pallens wall is promising, as evidenced by the findings explored in our rat model.
Collapse
Affiliation(s)
- Tasneem Ahmad
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Parag Kadam
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandawane, Pune 411038, Maharashtra, India;
| | - Gopal Bhiyani
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Md. Akbar
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy Dhule (MH), Dhule 424001, Maharashtra, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
5
|
Jamshidi B, Etminan A, Mehrabi A, Shooshtari L, Pour-Aboughadareh A. Comparison of phytochemical properties and expressional profiling of artemisinin synthesis-related genes in various Artemisia species. Heliyon 2024; 10:e26388. [PMID: 38439855 PMCID: PMC10909637 DOI: 10.1016/j.heliyon.2024.e26388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
The Artemisia genus belongs to the Asteraceae family and is used in the treatment of many different diseases such as hepatitis and cancer. So far, around 500 species of Artemisia have been found in different regions of the world. Artemisinin is one of the medicinal compounds found in Artemisia species. Hence, this medical feature encourages researchers to pay attention to various species of this genus to discover more genetic and phytochemical information. In the present study, five species of Artemisia including A. fragrans, A. annua, A. biennis, A. scoparia, and A. absinthium were compared to each other in terms of the artemisinin content and other phytochemical components. Moreover, the relative expression profiles of eight genes related to the accumulation and synthesis of artemisinin [including 4FPSF, DBR2, HMGR1, HMGR2, WIRKY, ADS, DXS, and SQS] were determined in investigated species. The result of high-performance liquid chromatography (HPLC) analysis showed that the content of artemisinin in various species was in the order of A. fragrans > A. annua > A. biennis > A. scoparia > A. absinthium. Based on the gas chromatography-mass spectrometry (GC-MS) analysis, 34, 26, 26, 24, and 20 phytochemical compounds were identified for A. scoparia, A. biennis, A. fragrans, A. absinthum, and A. annua species, respectively. Moreover, camphor (38.86%), β-thujone (68.42%), spathulenol (48.33%), β-farnesene (48.16%), and camphor (29.04%) were identified as the considerable compounds A. fragrans, A. absinthium, A. scoparia, A. biennis, and A. annua species, respectively. Considering the relative expression of the targeted genes, A. scoparia revealed higher expression for the 4FPSF gene. The highest relative expression of the DBR2, WIRKY, and SQS genes was found in A. absinthium species. Moreover, A. annua showed the highest expression of the ADS and DXS genes than the other species. In conclusion, our findings revealed that various species of Artemisia have interesting breeding potential for further investigation of different aspects such as medicinal properties and molecular studies.
Collapse
Affiliation(s)
- Bita Jamshidi
- Department of Plant Breeding and Biotechnology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Alireza Etminan
- Department of Plant Breeding and Biotechnology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Alimehras Mehrabi
- Department of Plant Breeding and Biotechnology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Lia Shooshtari
- Department of Plant Breeding and Biotechnology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
6
|
Negri S, Pietrolucci F, Andreatta S, Chinyere Njoku R, Antunes Silva Nogueira Ramos C, Crimi M, Commisso M, Guzzo F, Avesani L. Bioprospecting of Artemisia genus: from artemisinin to other potentially bioactive compounds. Sci Rep 2024; 14:4791. [PMID: 38413638 PMCID: PMC10899597 DOI: 10.1038/s41598-024-55128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Fabio Pietrolucci
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | | | - Ruth Chinyere Njoku
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | | | - Massimo Crimi
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
7
|
Hussain M, Thakur RK, Khazir J, Ahmed S, Khan MI, Rahi P, Peer LA, Shanmugam PV, Kaur S, Raina SN, Reshi ZA, Sehgal D, Rajpal VR, Mir BA. Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae): A High-value Medicinal Plant. Curr Top Med Chem 2024; 24:301-342. [PMID: 37711006 DOI: 10.2174/1568026623666230914104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.
Collapse
Affiliation(s)
- Manzoor Hussain
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Srinagar, J&K, India
| | - Sajad Ahmed
- Department of Plant Biotechnology, Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | | | - Praveen Rahi
- Biological Resources Center, Institut Pasteur, University de Paris, Paris, 75015, France
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Zafar Ahmad Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Deepmala Sehgal
- Syngenta, Jeolett's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Vijay Rani Rajpal
- Department of Botany, HansRaj College, University of Delhi, Delhi, 110007, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| |
Collapse
|
8
|
Salimian Rizi S, Rezayatmand Z, Ranjbar M, Yazdanpanahi N, Emami- Karvani ZD. The Effect of Bacillus Cereus on the Ion Homeostasis, Growth Parameters, and the Expression of Some Genes of Artemisinin Biosynthesis Pathway in Artemisia Absinthium Under Salinity Stress. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3687. [PMID: 38827342 PMCID: PMC11139441 DOI: 10.30498/ijb.2024.394178.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/12/2023] [Indexed: 06/04/2024]
Abstract
Background Soil salinity is a major problem in the world that affects the growth and yield of plants. Application of new and up-to-date techniques can help plants in dealing with salinity stress. One of the approaches for reducing environmental stress is the use of rhizosphere bacteria. Objective The aim of present study was to investigate the effect of the inoculation of Bacillus cereus on physiological and biochemical indicators and the expression of some key genes involved in the Artemisinin biosynthesis pathway in Artemisia absinthium under salinity stress. Materials and Methods The study was conducted using three different salinity levels (0, 75, 150 mM/NaCl) and two different bacterial treatments (i. e, without bacterial inoculation and co-inoculation with B. cereus isolates). The data from the experiments were analyzed using factorial analysis, and the resulting interaction effects were subsequently examined and discussed. Results The results showed that with increasing salinity, root and stem length, root and stem weight, root and stem dry weight, and potassium content were decreased, although the content of sodium was increased. Rhizosphere bacteria increased the contents of Artemisinin, potassium, calcium, magnesium, and iron and the expression of Amorpha-4,11-diene synthase and Cytochrome P450 monooxygenase1 genes as well as the growth indicators; although decreased the sodium content. The highest ADS expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. The highest CYP71AV1 expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. Conclusion These findings showed that the increase in growth indices under salinity stress was probably due to the improvement of nutrient absorption conditions as a result of ion homeostasis, sodium ion reduction and Artemisinin production conditions by rhizosphere B. cereus isolates E and B.
Collapse
Affiliation(s)
- Sara Salimian Rizi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Monireh Ranjbar
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Biotechnology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | |
Collapse
|
9
|
Rîmbu CM, Serbezeanu D, Vlad-Bubulac T, Suflet DM, Motrescu I, Lungoci C, Robu T, Vrînceanu N, Grecu M, Cozma AP, Fotea L, Anița DC, Popovici I, Horhogea CE. Antimicrobial Activity of Artemisia dracunculus Oil-Loaded Agarose/Poly(Vinyl Alcohol) Hydrogel for Bio-Applications. Gels 2023; 10:26. [PMID: 38247749 PMCID: PMC10815380 DOI: 10.3390/gels10010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, the potential use of Artemisia dracunculus essential oil in bio-applications was investigated. Firstly, the phytochemicals from Artemisia dracunculus were analyzed by different methods. Secondly, the Artemisia dracunculus essential oil was incorporated into the hydrogel matrix based on poly(vinyl alcohol) (PVA) and agar (A). The structural, morphological, and physical properties of the hydrogel matrix loaded with different amounts of Artemisia dracunculus essential oil were thoroughly investigated. FTIR analysis revealed the successful loading of the essential oil Artemisia dracunculus into the PVA/A hydrogel matrix. The influence of the mechanical properties and antimicrobial activity of the PVA/A hydrogel matrix loaded with different amounts of Artemisia dracunculus was also assessed. The antimicrobial activity of Artemisia dracunculus (EO Artemisia dracunculus) essential oil was tested using the disk diffusion method and the time-kill assay method after entrapment in the PVA/A hydrogel matrices. The results showed that PVA/agar-based hydrogels loaded with EO Artemisia dracunculus exhibited significant antimicrobial activity (log reduction ratio in the range of 85.5111-100%) against nine pathogenic isolates, both Gram-positive (S. aureus, MRSA, E. faecalis, L. monocytogenes) and Gram-negative (E. coli, K. pneumoniae, S. enteritidis, S. typhimurium, and A. salmonicida). The resulted biocompatible polymers proved to have enhanced properties when functionalized with the essential oil of Artemisia dracunculus, offering opportunities and possibilities for novel applications.
Collapse
Affiliation(s)
- Cristina Mihaela Rîmbu
- Department of Public Health, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| | - Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (T.V.-B.); (D.M.S.)
| | - Tăchiță Vlad-Bubulac
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (T.V.-B.); (D.M.S.)
| | - Dana Mihaela Suflet
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (T.V.-B.); (D.M.S.)
| | - Iuliana Motrescu
- Department of Exact Sciences, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (I.M.); (A.P.C.)
| | - Constantin Lungoci
- Department of Plant Science, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (C.L.); (T.R.)
| | - Teodor Robu
- Department of Plant Science, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (C.L.); (T.R.)
| | - Narcisa Vrînceanu
- Department of Industrial Machines and Equipments, Faculty of Engineering, “Lucian Blaga” University of Sibiu, 10 Victoriei Blvd, 550024 Sibiu, Romania;
| | - Mariana Grecu
- Department of Pharmacology, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| | - Andreea Paula Cozma
- Department of Exact Sciences, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (I.M.); (A.P.C.)
| | - Lenuța Fotea
- Department of Animal Resources and Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Dragoș Constantin Anița
- Regional Center of Advanced Research for Emerging Diseases Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Ivona Popovici
- Department of Preclinics, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| | - Cristina Elena Horhogea
- Department of Public Health, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
10
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
11
|
Soleimanifard S, Saeedi S, Yazdiniapour Z. Isolation of potent antileishmanial agents from Artemisia kermanensis Podlech using bioguided fractionation. J Parasit Dis 2023; 47:297-305. [PMID: 37193491 PMCID: PMC10182224 DOI: 10.1007/s12639-023-01569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Leishmaniasis is a major health problem worldwide with different clinical forms that depend on the parasite, the host's immune system, and immune-inflammatory responses. This study aimed to evaluate the secondary metabolites from Artemisia kermanensis Podlech by bioguided fractionation against Leishmania major. The chemical structures of the isolated compounds were determined based on analysis of mass and nuclear magnetic resonance spectra. Antileishmanial activity were determined on promastigotes and amastigotes. Chemical structures of the isolated compound were as 1-Acetoxy-3,7-dimethyl-7-hydroxy-octa-2E,5E-dien-4-one for compound 1 and 5,7-dihydroxy-3',4',6-trimethoxyflavone (Eupatilin) for compound 2, and 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone for compound 3. Compound 2 were confirmed by significant activity with IC50 of less than 50 μg/ml for 24 and 48 h in clinical form (amastigotes). Compound 3 demonstrated high susceptibility with an IC50 of less than 30 μg/ml for promastigotes for 24 h. The bioguided fractionation of A. kermanensis resulted the isolation of potent antileishmanial agents with a low toxicity effect on macrophages. These plant metabolites can be a candidate as a drug for treating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simindokht Soleimanifard
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Saeedi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Zeinab Yazdiniapour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| |
Collapse
|
12
|
Habib MA, Islam MM, Islam MM, Hasan MM, Baek KH. Current Status and De Novo Synthesis of Anti-Tumor Alkaloids in Nicotiana. Metabolites 2023; 13:metabo13050623. [PMID: 37233664 DOI: 10.3390/metabo13050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Alkaloids are the most diversified nitrogen-containing secondary metabolites, having antioxidant and antimicrobial properties, and are extensively used in pharmaceuticals to treat different types of cancer. Nicotiana serves as a reservoir of anti-cancer alkaloids and is also used as a model plant for the de novo synthesis of various anti-cancer molecules through genetic engineering. Up to 4% of the total dry weight of Nicotiana was found to be composed of alkaloids, where nicotine, nornicotine, anatabine, and anabasine are reported as the dominant alkaloids. Additionally, among the alkaloids present in Nicotiana, β-carboline (Harmane and Norharmane) and Kynurenines are found to show anti-tumor effects, especially in the cases of colon and breast cancers. Creating new or shunting of existing biosynthesis pathways in different species of Nicotiana resulted in de novo or increased synthesis of different anti-tumor molecules or their derivatives or precursors including Taxadiane (~22.5 µg/g), Artemisinin (~120 μg/g), Parthenolide (~2.05 ng/g), Costunolide (~60 ng/g), Etoposide (~1 mg/g), Crocin (~400 µg/g), Catharanthine (~60 ng/g), Tabersonine (~10 ng/g), Strictosidine (~0.23 mg/g), etc. Enriching the precursor pool, especially Dimethylallyl Diphosphate (DMAPP), down-regulating other bi-product pathways, compartmentalization or metabolic shunting, or organelle-specific reconstitution of the precursor pool, might trigger the enhanced accumulation of the targeted anti-cancer alkaloid in Nicotiana.
Collapse
Affiliation(s)
- Md Ahsan Habib
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mobinul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mukul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Potential of the combination of Artemisia absinthium extract and cisplatin in inducing apoptosis cascades through the expression of p53, BAX, caspase 3 ratio, and caspase 9 in lung cancer cells (Calu-6). Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, Klin P, Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022; 27:6427. [PMID: 36234965 PMCID: PMC9571683 DOI: 10.3390/molecules27196427] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
Artemisia species play a vital role in traditional and contemporary medicine. Among them, Artemisia abrotanum, Artemisia absinthium, Artemisia annua, Artemisia dracunculus, and Artemisia vulgaris are the most popular. The chemical composition and bioactivity of these species have been extensively studied. Studies on these species have confirmed their traditional applications and documented new pharmacological directions and their valuable and potential applications in cosmetology. Artemisia ssp. primarily contain sesquiterpenoid lactones, coumarins, flavonoids, and phenolic acids. Essential oils obtained from these species are of great biological importance. Extracts from Artemisia ssp. have been scientifically proven to exhibit, among others, hepatoprotective, neuroprotective, antidepressant, cytotoxic, and digestion-stimulating activities. In addition, their application in cosmetic products is currently the subject of several studies. Essential oils or extracts from different parts of Artemisia ssp. have been characterized by antibacterial, antifungal, and antioxidant activities. Products with Artemisia extracts, essential oils, or individual compounds can be used on skin, hair, and nails. Artemisia products are also used as ingredients in skincare cosmetics, such as creams, shampoos, essences, serums, masks, lotions, and tonics. This review focuses especially on elucidating the importance of the most popular/important species of the Artemisia genus in the cosmetic industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, IX Wieków Kielc 19a, 25-516 Kielce, Poland
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, Floriańska 25, 31-019 Kraków, Poland
| | - Paweł Klin
- US Army Health Clinic, Urlas Kaserne, Building 8156, 91522 Ansbach, Germany
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
15
|
Abdou AM, Seddek ALS, Abdelmageed N, Badry MO, Nishikawa Y. Wild Egyptian medicinal plants show in vitro and in vivo cytotoxicity and antimalarial activities. BMC Complement Med Ther 2022; 22:130. [PMID: 35550108 PMCID: PMC9101831 DOI: 10.1186/s12906-022-03566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background Medicinal plants have been successfully used as an alternative source of drugs for the treatment of microbial diseases. Finding a novel treatment for malaria is still challenging, and various extracts from different wild desert plants have been reported to have multiple medicinal uses for human public health, this study evaluated the antimalarial efficacy of several Egyptian plant extracts. Methods We assessed the cytotoxic potential of 13 plant extracts and their abilities to inhibit the in vitro growth of Plasmodium falciparum (3D7), and to treat infection with non-lethal Plasmodium yoelii 17XNL in an in vivo malaria model in BALB/c mice. Results In vitro screening identified four promising candidates, Trichodesma africanum, Artemisia judaica, Cleome droserifolia, and Vachellia tortilis, with weak-to-moderate activity against P. falciparum erythrocytic blood stages with mean half-maximal inhibitory concentration 50 (IC50) of 11.7 μg/ml, 20.0 μg/ml, 32.1 μg/ml, and 40.0 μg/ml, respectively. Their selectivity index values were 35.2, 15.8, 11.5, and 13.8, respectively. Among these four candidates, T. africanum crude extract exhibited the highest parasite suppression in a murine malaria model against P. yoelii. Conclusion Our study identified novel natural antimalarial agents of plant origin that have potential for development into therapeutics for treating malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03566-5.
Collapse
Affiliation(s)
- Ahmed M Abdou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-08555, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Abdel-Latif S Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Mohamed O Badry
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-08555, Japan.
| |
Collapse
|
16
|
Dogan K, Erol E, Didem Orhan M, Degirmenci Z, Kan T, Gungor A, Yasa B, Avsar T, Cetin Y, Durdagi S, Guzel M. Instant determination of the artemisinin from various Artemisia annua L. extracts by LC-ESI-MS/MS and their in-silico modelling and in vitro antiviral activity studies against SARS-CoV-2. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:303-319. [PMID: 34585460 PMCID: PMC8662158 DOI: 10.1002/pca.3088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Numerous efforts in natural product drug development are reported for the treatment of Coronavirus. Based on the literature, among these natural plants Artemisia annua L. shows some promise for the treatment of SARS-CoV-2. OBJECTIVE The main objective of our study was to determine artemisinin content by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS), to investigate the in vitro biological activity of artemisinin from the A. annua plants grown in Turkey with various extracted methods, to elaborate in silico activity against SARS-CoV-2 using molecular modelling. METHODOLOGY Twenty-one different extractions were applied. Direct and sequential extractions studies were compared with ultrasonic assisted maceration, Soxhlet, and ultra-rapid determined artemisinin active molecules by LC-ESI-MS/MS methods. The inhibition of spike protein and main protease (3CL) enzyme activity of SARS-CoV-2 virus was assessed by time resolved fluorescence energy transfer (TR-FRET) assay. RESULTS Artemisinin content in the range 0.062-0.066%. Artemisinin showed significant inhibition of 3CL protease activity but not Spike/ACE-2 binding. The 50% effective concentration (EC50 ) of artemisinin against SARS-CoV-2 Spike pseudovirus was found greater than 50 μM (EC45 ) in HEK293T cell line whereas the cell viability was 94% of the control (P < 0.01). The immunosuppressive effects of artemisinin on TNF-α production on both pseudovirus and lipopolysaccharide (LPS)-induced THP-1 cells were found significant in a dose dependent manner. CONCLUSION Further studies of these extracts for COVID-19 treatment will shed light to seek alternative treatment options. Moreover, these natural extracts can be used as an additional treatment option with medicines, as well as prophylactic use can be very beneficial for patients.
Collapse
Affiliation(s)
- Kubra Dogan
- Chemical and Metallurgical Engineering Institute, Food EngineeringYildiz Technical UniversityIstanbulTurkey
- Research Institute for Health Sciences and Technologies (SABITA), Centre of Drug Discovery and DevelopmentIstanbul Medipol UniversityIstanbulTurkey
| | - Ebru Erol
- Research Institute for Health Sciences and Technologies (SABITA), Centre of Drug Discovery and DevelopmentIstanbul Medipol UniversityIstanbulTurkey
- Faculty of Pharmacy, Department of Analytical ChemistryBezmialem Vakif UniversityIstanbulTurkey
| | - Muge Didem Orhan
- Health Sciences Institute, Neuroscience LaboratoryBahcesehir UniversityIstanbulTurkey
| | - Zehra Degirmenci
- Health Sciences Institute, Neuroscience LaboratoryBahcesehir UniversityIstanbulTurkey
| | - Tugce Kan
- TUBITAK MAM Research CentreGenetic Engineering and Biotechnology InstituteGebze‐KocaeliTurkey
| | - Aysen Gungor
- TUBITAK MAM Research CentreGenetic Engineering and Biotechnology InstituteGebze‐KocaeliTurkey
| | - Belkis Yasa
- Faculty of Forestry, Department of Forest Industry EngineeringBursa Technical UniversityBursaTurkey
| | - Timucin Avsar
- Health Sciences Institute, Neuroscience LaboratoryBahcesehir UniversityIstanbulTurkey
- School of Medicine, Department of Medical BiologyBahcesehir UniversityIstanbulTurkey
| | - Yuksel Cetin
- TUBITAK MAM Research CentreGenetic Engineering and Biotechnology InstituteGebze‐KocaeliTurkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of MedicineBahcesehir UniversityIstanbulTurkey
| | - Mustafa Guzel
- Research Institute for Health Sciences and Technologies (SABITA), Centre of Drug Discovery and DevelopmentIstanbul Medipol UniversityIstanbulTurkey
- International School of Medicine, Department of Medical PharmacologyIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
17
|
Ahmed-Laloui H, Zaak H, Rahmani A, Kashi I, Chemat S, Miara MD, Cherb N, Derdour M. Assessment of artemisinin and antioxidant activities of three wild Artemisia species of Algeria. Nat Prod Res 2022; 36:6344-6352. [PMID: 35001764 DOI: 10.1080/14786419.2022.2025803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Artemisinin, a natural product, has received considerable attention in the last few years as a potent antimalarial drug.This study reports the presence of Artemisinin in three Algerian wild Artemisia species assessed by HPLC method: A. herba-alba (AH), A. campestris subsp. glutinosa (AC), and A. judaica subsp sahariensis (AJ).The HPLC analysis of the hexane extracts, showed a difference in artemisinin content in studied species with a yield of 0.64%, 0.34% and 0.04% for AC, AH and AJ, respectively. Moreover, the level of artemisinin obtained in A. campestris was better than those found in A. sieberi and A. annua. This rate has been reported for the first time.Furthermore, the antiradical activities of methanolic extracts of plants were also tested. There was a remarkable antioxidant capacity found in all Artemisia methanolic extracts analysed.
Collapse
Affiliation(s)
- Hamza Ahmed-Laloui
- Animal Biotechnology Laboratory, Biotechnology and Agriculture Division, Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Constantine, Algeria
| | - Hadjer Zaak
- Food Biotechnology Division, Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Constantine, Algeria
| | - Abderrahman Rahmani
- Animal Biotechnology Laboratory, Biotechnology and Agriculture Division, Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Constantine, Algeria
| | - Imad Kashi
- Industry Biotechnology Division, Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Constantine, Algeria
| | - Smain Chemat
- Extraction & Separation Techniques Team, Centre de Recherches Scientifique et Technique en Analyses Physico-Chimiques (C.R.A.P.C.), Algiers, Algeria
| | - Mohamed Djamel Miara
- Department of Nature and life Science, Faculty of Nature and life Science, Ibn Khaldoun University, Tiaret, Algeria
| | - Nora Cherb
- Environment Biotechnology Division, Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Constantine, Algeria
| | - Mouna Derdour
- Animal Biotechnology Laboratory, Biotechnology and Agriculture Division, Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Constantine, Algeria
| |
Collapse
|
18
|
Ossai EC, Eze AA, Ogugofor MO. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery. Niger J Clin Pract 2022; 25:747-764. [DOI: 10.4103/njcp.njcp_1322_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Artemisia annua Growing Wild in Romania—A Metabolite Profile Approach to Target a Drug Delivery System Based on Magnetite Nanoparticles. PLANTS 2021; 10:plants10112245. [PMID: 34834609 PMCID: PMC8623694 DOI: 10.3390/plants10112245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/27/2023]
Abstract
The metabolites profile of a plant is greatly influenced by geographical factors and the ecological environment. Various studies focused on artemisinin and its derivates for their antiparasitic and antitumoral effects. However, after the isolation and purification stage, their pharmaceutical potential is limited due to their low bioavailability, permeability and lifetime. The antibacterial activity of essential oils has been another topic of interest for many studies on this plant. Nevertheless, only a few studies investigate other metabolites in Artemisia annua. Considering that secondary metabolites act synergistically in a plant, the existence of other metabolites with antitumor and high immunomodulating activity is even more important. Novel nano-carrier systems obtained by loading herbs into magnetic nanoparticles ensures the increase in the antitumor effect, but also, overcoming the barriers related to permeability, localization. This study reported the first complete metabolic profile from wild grown Romanian Artemisia annua. A total of 103 metabolites were identified under mass spectra (MS) positive mode from 13 secondary metabolite categories: amino acids, terpenoids, steroids, coumarins, flavonoids, organic acids, fatty acids, phenolic acids, carbohydrates, glycosides, aldehydes, hydrocarbons, etc. In addition, the biological activity of each class of metabolites was discussed. We further developed a simple and inexpensive nano-carrier system with the intention to capitalize on the beneficial properties of both components. Evaluation of the nano-carrier system’s morpho-structural and magnetic properties was performed.
Collapse
|
20
|
Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. Zanthoxylum Species: A Review of Traditional Uses, Phytochemistry and Pharmacology in Relation to Cancer, Infectious Diseases and Sickle Cell Anemia. Front Pharmacol 2021; 12:713090. [PMID: 34603027 PMCID: PMC8479109 DOI: 10.3389/fphar.2021.713090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.
Collapse
Affiliation(s)
| | | | - Emmanuel Chigozie Aham
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
21
|
Liana D, Rungsihirunrat K. Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery. J Adv Pharm Technol Res 2021; 12:254-260. [PMID: 34345604 PMCID: PMC8300331 DOI: 10.4103/japtr.japtr_238_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC50μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC506.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate.
Collapse
Affiliation(s)
- Desy Liana
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Rungsihirunrat
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Ekiert H, Knut E, Świątkowska J, Klin P, Rzepiela A, Tomczyk M, Szopa A. Artemisia abrotanum L. (Southern Wormwood)-History, Current Knowledge on the Chemistry, Biological Activity, Traditional Use and Possible New Pharmaceutical and Cosmetological Applications. Molecules 2021; 26:2503. [PMID: 33923002 PMCID: PMC8123286 DOI: 10.3390/molecules26092503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Artemisia abrotanum L. (southern wormwood) is a plant species with an important position in the history of European and Asian medicine. It is a species famous as a medicinal plant in Central Asia, Asia Minor, and in South-East and Central Europe. The raw materials obtained from this species are Abrotani herba and Abrotani folium. In the traditional European medicine, they have been used successfully most of all in liver and biliary tract diseases, in parasitic diseases in children and as antipyretic medication. In the official European medicine, this plant species is recommended by the French Pharmacopoeia for use in homeopathy. In many European countries, it is used traditionally in allopathy. The latest studies on the biological activity of extracts from the aboveground parts of the plant and/or the leaves, and/or the essential oil have provided evidence of other possible applications related to their antibacterial, antifungal, antioxidant, anticancer, and antiallergic properties. The latest studies have also focused on the repellent activity of the essential oil of this species and the possibility to use it in the prevention of diseases in which insects are the vectors. The main substances obtained from the plant that are responsible for this activity are: the essential oil, coumarins, phenolic acids, and flavonoids. Some of the latest investigations emphasize the large differences in the composition of the essential oil, determined by the geographical (climatic) origin of the plant. A. abrotanum is recommended by the European Cosmetic Ingredients Database (CosIng) as a source of valuable cosmetic ingredients. Additionally, the leaves of this species possess a well-established position in the food industry. This plant species is also the object of biotechnological studies.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland; (E.K.); (J.Ś.)
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland; (E.K.); (J.Ś.)
| | - Joanna Świątkowska
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland; (E.K.); (J.Ś.)
| | - Paweł Klin
- Family Medicine Clinic, Medizinisches Versorgungszentrum (MVZ) Burgbernheim GmbH, Gruene Baumgasse 2, 91593 Burgbernheim, Germany;
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, ul. Floriańska 25, 31-019 Kraków, Poland;
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland; (E.K.); (J.Ś.)
| |
Collapse
|
23
|
Ababutain IM, Aldosary SK, Aljuraifani AA, Alghamdi AI, Alabdalall AH, Al-Khaldi EM, Aldakeel SA, Almandil NB, AbdulAzeez S, Borgio JF. Identification and Antibacterial Characterization of Endophytic Fungi from Artemisia sieberi. Int J Microbiol 2021; 2021:6651020. [PMID: 33747087 PMCID: PMC7960065 DOI: 10.1155/2021/6651020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi serve as a reservoir for important secondary metabolites. The current study focused on the antibacterial properties of endophytic fungi isolated from Artemisia sieberi. Initially, six endophytic fungi were isolated and purified from the stem of A. sieberi. Endophytic fungi were identified by morphological characteristics, as well as by molecular identification using 18S rRNA gene sequencing method. All the six isolates were subjected to the preliminary screening for their antibacterial activity against nine important pathogenic bacteria using the disk-diffusion method. Crude extracts of the most active isolate were obtained using ethyl acetate. Antibacterial activity of the ethyl acetate extract was evaluated using well diffusion method on the selected isolate. The antibacterial efficiency of the selected isolate was evaluated by determining the Minimum Inhibitory Concentration (MIC). MIC values were in appreciable quantity against both Gram-positive and Gram-negative bacteria ranging from 3.125 to 6.25 µg/mL and 12.5 to 50 µg/mL, respectively. This result indicated that Gram-positive bacteria were more susceptible to the endophytic fungi extract. Moreover, the molecular identification results revealed that all the isolates belong to Ascomycota and represented Aspergillus and Penicillium genera and three species: A. oryzae (three isolates), A. niger (one isolate), and P. chrysogenum (two isolates). All six endophytic fungi were able to inhibit the growth of at least two of the tested bacteria. Among the isolated strains, isolate AS2, which identified as P. chrysogenum, exhibited the highest antibacterial activity against all nine tested bacteria and was higher than or equal to the positive control against most of the tested bacteria. Future studies are required to isolate and identify these bioactive substances, which can be considered as a potential source for the synthesis of new antibacterial drugs to treat infectious diseases.
Collapse
Affiliation(s)
- Ibtisam Mohammed Ababutain
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sahar Khamees Aldosary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amal Abdulaziz Aljuraifani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Azzah Ibrahim Alghamdi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amira Hassan Alabdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eida Marshid Al-Khaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sumayh A. Aldakeel
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
24
|
Ibrahim KG, Mukonowenzou NC, Usman D, Adeshina KA, Erlwanger KH. The potential of Artemisia species for use as broad-spectrum agents in the management of metabolic syndrome: a review. Arch Physiol Biochem 2021; 129:752-770. [PMID: 33569991 DOI: 10.1080/13813455.2021.1871761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although the prevalence of metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that predispose to the development of type 2 diabetes mellitus and cardiovascular diseases, is increasing globally, there is no broad-spectrum agent for its holistic treatment. Natural plant-derived products with a wide spectrum of biological activities are currently being explored as alternatives in the management of diseases. Artemisia species are a heterozygous group of plants of the Compositae family that possess several health benefits. Here we highlight their antidiabetic, anti-obesity, anti-hyperlipidaemic, hepatoprotective and cardioprotective properties among others. These activities have been linked to the presence of phytochemicals that act on several molecular targets to exert their effects and the species of Artemisia are considered to be relatively safe. Artemisia species offer significant anti-MetS activity and thus are strong therapeutic candidates for the effective management of MetS.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nyasha Charity Mukonowenzou
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res 2021; 44:439-474. [PMID: 33893998 PMCID: PMC8067791 DOI: 10.1007/s12272-021-01328-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023]
Abstract
Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.
Collapse
|
26
|
Significance of Artemisia Vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules 2020; 25:molecules25194415. [PMID: 32992959 PMCID: PMC7583039 DOI: 10.3390/molecules25194415] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisia vulgaris L. (common mugwort) is a species with great importance in the history of medicine and was called the “mother of herbs” in the Middle Ages. It is a common herbaceous plant that exhibits high morphological and phytochemical variability depending on the location where it occurs. This species is well known almost all over the world. Its herb—Artemisiae vulgaris herba—is used as a raw material due to the presence of essential oil, flavonoids, and sesquiterpenoids lactones and their associated biological activities. The European Pharmacopoeia has listed this species as a potential homeopathic raw material. Moreover, this species has been used in traditional Chinese, Hindu, and European medicine to regulate the functioning of the gastrointestinal system and treat various gynecological diseases. The general aim of this review was to analyze the progress of phytochemical and pharmacological as well as professional scientific studies focusing on A. vulgaris. Thus far, numerous authors have confirmed the beneficial properties of A. vulgaris herb extracts, including their antioxidant, hepatoprotective, antispasmolytic, antinociceptive, estrogenic, cytotoxic, antibacterial, and antifungal effects. In addition, several works have reviewed the use of this species in the production of cosmetics and its role as a valuable spice in the food industry. Furthermore, biotechnological micropropagation of A. vulgaris has been analyzed.
Collapse
|
27
|
Chemical Composition and Biological Activity of Essential Oil from Artemisia leucotricha Growing in Tajikistan. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Sharopov FS, Salimov A, Numonov S, Safomuddin A, Bakri M, Salimov T, Setzer WN, Habasi M. Chemical Composition, Antioxidant, and Antimicrobial Activities of the Essential Oils From Аrtemisia annua L. Growing Wild in Tajikistan. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20927814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aerial parts of Аrtemisia annua L. were collected from Varzob, Rudaki, and Hisor regions of Tajikistan. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. The essential oils of aerial parts of А. annua were dominated by the monoterpenoids like camphor (32.5%-58.9%), 1,8-cineole (13.7%-17.8%), camphene (4.5%-8.4%), and α-pinene (1.9%-7.3%). Hierarchical cluster analysis of A. annua essential oils indicated the existence of 3 A. annua chemotypes: camphor/1,8-cineole, camphor, and artemisia ketone. The essential oils of А. annua show weak antioxidant activity and average antibacterial activity. In our opinion, the antibacterial activity of А. annua essential oils is related to the presence of 1,8-cineole. To our best knowledge, this is the first report concerning the chemical composition, chemotypic variation, antioxidant, and antimicrobial activities of the essential oils obtained from the aerial parts of А. annua, growing wild in Tajikistan.
Collapse
Affiliation(s)
- Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", Dushanbe, Tajikistan
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Aminjon Salimov
- V.I. Nikitin Institute of Chemistry of the Tajikistan Academy of Sciences, Dushanbe, Tajikistan
| | - Sodik Numonov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", Dushanbe, Tajikistan
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Abduahad Safomuddin
- Faculty of Chemistry, National University of Tajikistan, Rudaki, Dushanbe, Tajikistan
| | - Mahinur Bakri
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Tojiddin Salimov
- Institute of Veterinary of the Academy of Agricultural Sciences of Tajikistan, Kahorov, Tajikistan
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
- Aromatic Plant Research Center, USA, Lehi, UT
| | - Maidina Habasi
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", Dushanbe, Tajikistan
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
29
|
Salehi B, Staniak M, Czopek K, Stępień A, Dua K, Wadhwa R, Kumar Chellappan D, Sytar O, Brestic M, Ganesh Bhat N, Venkatesh Anil Kumar N, del Mar Contreras M, Sharopov F, C. Cho W, Sharifi-Rad J. The Therapeutic Potential of the Labdane Diterpenoid Forskolin. APPLIED SCIENCES 2019; 9:4089. [DOI: 10.3390/app9194089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Forskolin is mainly found in the root of a plant called Coleus forskohlii (Willd.) Briq., which has been used in the traditional medicine of Indian Ayurvedic and Southeast Asia since ancient times. Forskolin is responsible for the pharmacological activity of this species. Forskolin is a labdane diterpenoid with a wide biological effect. Several studies suggested a positive role of forskolin on heart complications, respiratory disorders, high blood pressure, obesity, and asthma. There are numerous clinical and pre-clinical studies representing the effect of forskolin on the above-mentioned disorders but more clinical studies need to be performed to support its efficacy.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Anna Stępień
- Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ridhima Wadhwa
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi 110021, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovak
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovak
| | - Namrata Ganesh Bhat
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe 73400, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
30
|
|
31
|
Biological Potential and Medical Use of Secondary Metabolites. MEDICINES 2019; 6:medicines6020066. [PMID: 31212776 PMCID: PMC6632032 DOI: 10.3390/medicines6020066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
This Medicines special issue focuses on the great potential of secondary metabolites for therapeutic applications. The special issue contains 16 articles reporting relevant experimental results and overviews of bioactive secondary metabolites. Their biological effects and new methodologies that improve the lead compounds’ synthesis were also discussed. We would like to thank all 83 authors, from all over the world, for their valuable contributions to this special issue.
Collapse
|