1
|
de León Guerra L, Padilla Montaño N, Moujir L. Interference of Celastrol with Cell Wall Synthesis and Biofilm Formation in Staphylococcus epidermidis. Antibiotics (Basel) 2025; 14:26. [PMID: 39858312 PMCID: PMC11759760 DOI: 10.3390/antibiotics14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The emergence of antibiotic-resistant bacteria, including Staphylococcus epidermidis, underscores the need for novel antimicrobial agents. Celastrol, a natural compound derived from the plants of the Celastraceae family, has demonstrated promising antibacterial and antibiofilm properties against various pathogens. Objectives: This study aims to evaluate the antibacterial effects, mechanism of action, and antibiofilm activity of celastrol against S. epidermidis, an emerging opportunistic pathogen. Methods: To investigate the mechanism of action of celastrol, its antibacterial activity was evaluated by determining the time-kill curves, assessing macromolecular synthesis, and analysing its impact on the stability and functionality of the bacterial cell membrane. Additionally, its effect on biofilm formation and disruption was examined. Results: Celastrol exhibited significant antibacterial activity with a minimal inhibitory concentration (MIC) of 0.31 μg/mL and minimal bactericidal concentration (MBC) of 15 μg/mL, which is superior to conventional antibiotics used as control. Time-kill assays revealed a concentration-dependent bactericidal effect, with a shift from bacteriostatic activity at lower concentrations to bactericidal and lytic effect at higher concentrations. Celastrol inhibited cell wall biosynthesis by blocking the incorporation of N-acetylglucosamine (NAG) into peptidoglycan. In contrast, the cytoplasmic membrane was only affected at higher concentrations of the compound or after prolonged exposure times. Additionally, celastrol was able to disrupt biofilm formation at concentrations of 0.9 μg/mL and to eradicate pre-formed biofilms at 7.5 μg/mL in S. epidermidis. Conclusions: Celastrol exhibits significant antibacterial and antibiofilm activities against S. epidermidis, with a primary action on cell wall synthesis. Its efficacy in disrupting the formation of biofilms and pre-formed biofilms suggests its potential as a therapeutic agent for infections caused by biofilm-forming S. epidermidis resistant to conventional treatments.
Collapse
Affiliation(s)
- Leandro de León Guerra
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, Avenida Astrofísico Fco Sánchez s/n, 38206 La Laguna, Spain (N.P.M.)
| | - Nayely Padilla Montaño
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, Avenida Astrofísico Fco Sánchez s/n, 38206 La Laguna, Spain (N.P.M.)
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43 s/n x 96, Paseo de las Fuentes y 40 Col, Mérida 97069, Mexico
| | - Laila Moujir
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, Avenida Astrofísico Fco Sánchez s/n, 38206 La Laguna, Spain (N.P.M.)
| |
Collapse
|
2
|
Al-Rubaiai F, Al-Shariqi ZZ, Al-Shabibi KS, Husband J, Al-Hattali AM, Goettert M, Laufer S, Baqi Y, Hassan SI, Fatope MO. Isolation and Identification of Phytocompounds from Maytenus dhofarensis and Their Biological Potentials. Molecules 2023; 28:6077. [PMID: 37630328 PMCID: PMC10459021 DOI: 10.3390/molecules28166077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Maytenus dhofarensis Sebsebe (Celestraceae) is a naturally growing shrub in Oman. It is not a reputed medicinal plant in Oman, but it is regionally endemic and causes shivering attacks on goats that graze on it. The chemical investigation of the hexane and chloroform extracts of the fruits and stems of M. dhofarensis afforded dihydro-β-agarofuran-type sesquiterpene pyridine alkaloid (1), lupanyl myristoate (2) and lignanolactone (3). Compounds (1-3) are new isolates from M. dhofarensis. The structures of these compounds were assigned through comprehensive IR, NMR, and ESI-MS analyses, and the relative configurations of compounds 1 and 3 were deduced from density function theory (DFT) calculations and NMR experiments. Compound 1 was assayed against the kinase enzyme and showed no inhibition activity for p38 alpha and delta at a 10 µM test concentration. Compound 3 inhibited the 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) by 69.5%, compared to 70.9% and 78.0% for gallic acid and butylated hydroxyanisole, respectively, which were used as positive controls.
Collapse
Affiliation(s)
- Fatma Al-Rubaiai
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - Zakiya Zahran Al-Shariqi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - Khalsa S. Al-Shabibi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - John Husband
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - Asmaa M. Al-Hattali
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - Marcia Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany (S.L.)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany (S.L.)
- Tübingen Center for Academic Drug Discovery (TüCAD2), D-72076 Tübingen, Germany
| | - Younis Baqi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - Syed Imran Hassan
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| | - Majekodunmi O. Fatope
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khod, P.O. Box 36, Muscat 123, Oman; (F.A.-R.); (J.H.); (Y.B.)
| |
Collapse
|
3
|
Das DD, Sharma N, Chawla V, Chawla PA. Current Trends of Analytical Techniques for Bioactive Terpenoids: A Review. Crit Rev Anal Chem 2023; 54:2984-3000. [PMID: 37289481 DOI: 10.1080/10408347.2023.2219757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Terpenes and terpenoids are the primary bioactive substances present in essential volatile oils, condensed liquids extracted from diverse plant parts. These substances demonstrate remarkable biological activity and are frequently used as medicines, food additives, and scent molecules. Terpenoids have a wide range of pharmacological effects on the human body, including the treatment, prevent, and reduce the discomfort associated with a number of chronic illnesses. Therefore, these bioactive substances are crucial to our everyday existence. As most terpenoids are present in complex form, coupled with many other raw plant elements, it is important to identify and characterize these molecules. This article addresses various classes of terpenoids, their biochemical processes, and their biological functions. Additionally, it includes a comprehensive description of several hyphenated procedures and recently popular analytical approaches used for isolation, identification, and absolute characterization. It also includes a discussion of the various advantages, drawbacks, and challenges encountered during the collection of the sample and throughout the entire research process.
Collapse
Affiliation(s)
| | - Nikita Sharma
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| |
Collapse
|
4
|
Ambrosio FA, Costa G, Gallo Cantafio ME, Torcasio R, Trapasso F, Alcaro S, Viglietto G, Amodio N. Natural Agents as Novel Potential Source of Proteasome Inhibitors with Anti-Tumor Activity: Focus on Multiple Myeloma. Molecules 2023; 28:molecules28031438. [PMID: 36771100 PMCID: PMC9919276 DOI: 10.3390/molecules28031438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive and incurable disease for most patients, characterized by periods of treatment, remission and relapse. The introduction of new classes of drugs, such as proteasome inhibitors (PIs), has improved survival outcomes in these patient populations. The proteasome is the core of the ubiquitin-proteasome system (UPS), a complex and conserved pathway involved in the control of multiple cellular processes, including cell cycle control, transcription, DNA damage repair, protein quality control and antigen presentation. To date, PIs represent the gold standard for the treatment of MM. Bortezomib was the first PI approved by the FDA, followed by next generation of PIs, namely carfilzomib and ixazomib. Natural agents play an important role in anti-tumor drug discovery, and many of them have recently been reported to inhibit the proteasome, thus representing a new potential source of anti-MM drugs. Based on the pivotal biological role of the proteasome and on PIs' significance in the management of MM, in this review we aim to briefly summarize recent evidence on natural compounds capable of inhibiting the proteasome, thus triggering anti-MM activity.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| |
Collapse
|
5
|
Happi GM, Ntabo VK, Tcho AT, Wansi JD. Naturally occurring dimeric triterpenoids: Occurrence, chemistry and bioactivities. PHYTOCHEMISTRY 2022; 200:113242. [PMID: 35594948 DOI: 10.1016/j.phytochem.2022.113242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The triterpenes represent one of the most reported subclasses of specialized metabolites from the plant kingdom. They play a key role in the protection of plants and their metabolism in addition to displaying a high structural diversity and large scale of biological activities. The scaffold can undergo several reactions like oxidation or substitution at different positions of the skeleton leading to the formation of several types of compounds. More specifically, triterpene dimer is a small group of compounds found in nature (from plants precisely). Until 2021, the chemical and pharmacological works reported in the literature indicated the identification of 90 natural dimeric triterpenes and 11 synthetic derivatives from 19 plants species and very few of them have been biologically evaluated for their antibacterial, antioxidant, antiproliferative or molluscicide activities. This review aims to compile the literature on the occurrence, chemistry and biological activities of the triterpenoid dimers. To attend this goal, a literature survey has been done in a number of online libraries including Scifinder, PubMed, Web of Science and Google Scholar using keywords terpene, triterpene, dimer, celastroloid without language restriction. This paper provides the easiest access to the information on triterpene dimers for readers and researchers in view to enhancing the continuity of research works on this topic.
Collapse
Affiliation(s)
- Gervais Mouthé Happi
- Department of Chemistry, Higher Teacher Training College, The University of Bamenda, P.O Box 39, Bambili, Cameroon.
| | - Virginia Kien Ntabo
- Department of Chemistry, Higher Teacher Training College, The University of Bamenda, P.O Box 39, Bambili, Cameroon
| | - Alain Tadjong Tcho
- Department of Chemistry, Faculty of Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Jean Duplex Wansi
- Department of Chemistry, Faculty of Sciences, University of Douala, P. O. Box 24157, Douala, Cameroon
| |
Collapse
|
6
|
Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D. Anti-viral triterpenes: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1761-1842. [PMID: 35283698 PMCID: PMC8896976 DOI: 10.1007/s11101-022-09808-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/27/2022] [Indexed: 05/07/2023]
Abstract
Triterpenes are naturally occurring derivatives biosynthesized following the isoprene rule of Ruzicka. The triterpenes have been reported to possess a wide range of therapeutic applications including anti-viral properties. In this review, the recent studies (2010-2020) concerning the anti-viral activities of triterpenes have been summarized. The structure activity relationship studies have been described as well as brief biosynthesis of these triterpenes is discussed.
Collapse
Affiliation(s)
- Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Shreya Sen Sarma
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Amit K. Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Rinku Baishya
- Natural Product Chemistry Group, CSIR-North East Institute of Science and Technology (NEIST), NH-37, Pulibor, Jorhat, Assam India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| |
Collapse
|
7
|
Camargo KC, de Aguilar MG, Moraes ARA, de Castro RG, Szczerbowski D, Miguel ELM, Oliveira LR, Sousa GF, Vidal DM, Duarte LP. Pentacyclic Triterpenoids Isolated from Celastraceae: A Focus in the 13C-NMR Data. Molecules 2022; 27:molecules27030959. [PMID: 35164224 PMCID: PMC8838773 DOI: 10.3390/molecules27030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
The Celastraceae family comprises about 96 genera and more than 1.350 species, occurring mainly in tropical and subtropical regions of the world. The species of this family stand out as important plant sources of triterpenes, both in terms of abundance and structural diversity. Triterpenoids found in Celastraceae species display mainly lupane, ursane, oleanane, and friedelane skeletons, exhibiting a wide range of biological activities such as antiviral, antimicrobial, analgesic, anti-inflammatory, and cytotoxic against various tumor cell lines. This review aimed to document all triterpenes isolated from different botanical parts of species of the Celastraceae family covering 2001 to 2021. Furthermore, a compilation of their 13C-NMR data was carried out to help characterize compounds in future investigations. A total of 504 pentacyclic triterpenes were compiled and distinguished as 29 aromatic, 50 dimers, 103 friedelanes, 89 lupanes, 102 oleananes, 22 quinonemethides, 88 ursanes and 21 classified as others.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grasiely Faria Sousa
- Correspondence: (G.F.S.); (D.M.V.); (L.P.D.);Tel.: +55-31-3409-5728 (G.F.S.); +55-31-3409-5750 (D.M.V.); +55-31-3409-5722 (L.P.D.)
| | - Diogo Montes Vidal
- Correspondence: (G.F.S.); (D.M.V.); (L.P.D.);Tel.: +55-31-3409-5728 (G.F.S.); +55-31-3409-5750 (D.M.V.); +55-31-3409-5722 (L.P.D.)
| | - Lucienir Pains Duarte
- Correspondence: (G.F.S.); (D.M.V.); (L.P.D.);Tel.: +55-31-3409-5728 (G.F.S.); +55-31-3409-5750 (D.M.V.); +55-31-3409-5722 (L.P.D.)
| |
Collapse
|
8
|
Pitakbut T, Spiteller M, Kayser O. In Vitro Production and Exudation of 20-Hydroxymaytenin from Gymnosporia heterophylla (Eckl. and Zeyh.) Loes. Cell Culture. PLANTS (BASEL, SWITZERLAND) 2021; 10:1493. [PMID: 34451538 PMCID: PMC8398937 DOI: 10.3390/plants10081493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022]
Abstract
The metabolite 20-Hydroxymaytenin (20-HM) is a member of the quinone-methide pentacyclic triterpenoids (QMTs) group. This metabolite group is present only in Celastraceae plants, and it has shown various biological activities from antioxidant to anticancer properties. However, most QMTs metabolites including 20-HM cannot be synthesized in a laboratory. Therefore, we optimized a plant tissue culture protocol and examined the potential of Gymnosporia heterophylla (synonym. Maytenus heterophylla) to produce 20-HM in an in vitro experiment. For the first time, we reported the optimum callus induction medium with a high percentage success rate of 82% from the combination of 1 mg/L indole-3-butyric acid and 5 mg/L naphthalene acetic acid. Later, our cell suspension culture cultivated in the optimum medium provided approximately 0.35 mg/g fresh weight of 20-HM. This concentration is roughly 87.5 times higher than a concentration of 20-HM presenting in Elaeodendron croceum (Celastraceae) leaves. In addition, we also found that 20-HM presented in a cultivation medium, suggesting that G. heterophylla cells secreted 20-HM as an exudate in our experiment. Noticeably, 20-HM was missing when Penicillium cf. olsonii occurred in the medium. These findings hint at an antifungal property of 20-HM.
Collapse
Affiliation(s)
- Thanet Pitakbut
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| |
Collapse
|
9
|
Núñez MJ, Martínez ML, López-Arencibia A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Jiménez IA, Lorenzo-Morales J, Piñero JE, Bazzocchi IL. In Vitro Susceptibility of Kinetoplastids to Celastroloids from Maytenus chiapensis. Antimicrob Agents Chemother 2021; 65:e02236-20. [PMID: 33753334 PMCID: PMC8316137 DOI: 10.1128/aac.02236-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/08/2021] [Indexed: 01/06/2023] Open
Abstract
Leishmaniasis and Chagas are among the most significant neglected tropical diseases. Due to several drawbacks with the current chemotherapy, developing new antikinetoplastid drugs has become an urgent issue. In the present work, a bioassay-guided investigation of the root bark of Maytenus chiapensis on Leishmania amazonensis and Trypanosoma cruzi led to the identification of two D:A-friedo-nor-oleanane triterpenoids (celastroloids), 20β-hydroxy-tingenone (celastroloid 5) and 3-O-methyl-6-oxo-tingenol (celastroloid 8), as promising antikinetoplastid leads. They displayed higher potency on L. amazonensis promastigotes (50% inhibitory concentrations [IC50s], 0.44 and 1.12 μM, respectively), intracellular amastigotes (IC50s, 0.83 and 1.91 μM, respectively), and T. cruzi epimastigote stage (IC50s, 2.61 and 3.41 μM, respectively) than reference drugs miltefosine and benznidazole. This potency was coupled with an excellent selectivity index on murine macrophages. Mechanism of action studies, including mitochondrial membrane potential (Δψm) and ATP-level analysis, revealed that celastroloids could induce apoptotic cell death in L. amazonensis triggered by the mitochondria. In addition, the structure-activity relationship is discussed. These findings strongly underline the potential of celastroloids as lead compounds to develop novel antikinetoplastid drugs.
Collapse
Affiliation(s)
- Marvin J Núñez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, San Salvador, El Salvador
| | - Morena L Martínez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, San Salvador, El Salvador
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
10
|
Padilla-Montaño N, de León Guerra L, Moujir L. Antimicrobial Activity and Mode of Action of Celastrol, a Nortriterpen Quinone Isolated from Natural Sources. Foods 2021; 10:foods10030591. [PMID: 33799720 PMCID: PMC7998816 DOI: 10.3390/foods10030591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Species of the Celastraceae family are traditionally consumed in different world regions for their stimulating properties. Celastrol, a triterpene methylene quinone isolated from plants of celastraceas, specifically activates satiety centers in the brain that play an important role in controlling body weight. In this work, the antimicrobial activity and mechanism of action of celastrol and a natural derivative, pristimerin, were investigated in Bacillus subtilis. Celastrol showed a higher antimicrobial activity compared with pristimerin, being active against Gram-positive bacteria with minimum inhibitory concentrations (MICs) that ranged between 0.16 and 2.5 µg/mL. Killing curves displayed a bactericidal effect that was dependent on the inoculum size. Monitoring of macromolecular synthesis in bacterial populations treated with these compounds revealed inhibition in the incorporation of all radiolabeled precursors, but not simultaneously. Celastrol at 3 µg/mL and pristimerin at 10 µg/mL affected DNA and RNA synthesis first, followed by protein synthesis, although the inhibitory action on the uptake of radiolabeled precursors was more dramatic with celastrol. This compound also caused cytoplasmic membrane disruption observed by potassium leakage and formation of mesosome-like structures. The inhibition of oxygen consumption of whole and disrupted cells after treatments with both quinones indicates damage in the cellular structure, suggesting the cytoplasmic membrane as a potential target. These findings indicate that celastrol could be considered as an interesting alternative to control outbreaks caused by spore-forming bacteria.
Collapse
|
11
|
Biological Potential and Medical Use of Secondary Metabolites. MEDICINES 2019; 6:medicines6020066. [PMID: 31212776 PMCID: PMC6632032 DOI: 10.3390/medicines6020066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
This Medicines special issue focuses on the great potential of secondary metabolites for therapeutic applications. The special issue contains 16 articles reporting relevant experimental results and overviews of bioactive secondary metabolites. Their biological effects and new methodologies that improve the lead compounds’ synthesis were also discussed. We would like to thank all 83 authors, from all over the world, for their valuable contributions to this special issue.
Collapse
|