1
|
Ardeh DN, Nourbakhsh MS, Montazeri A, Rastegar H, Kari AY. Fabrication and biological properties of electrospun chitosan/polyethylene oxide nanofibrous scaffolds loaded with the Arctium lappa L. extract. Int J Biol Macromol 2025; 308:142544. [PMID: 40147660 DOI: 10.1016/j.ijbiomac.2025.142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Chitosan (CS)/polyethylene oxide (PEO)/Arctium lappa L. (A. lappa) scaffolds can be extensively used as wound dressings. Therefore, in this study, electrospinning and cross-linked with glutaraldehyde vapor fabricated CS/PEO scaffolds with a weight ratio (2:1) containing different extract concentrations (15, 25, and 35 wt%). The scaffolds were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), Gas chromatography mass spectrometry (GC-MS), tensile strength test, thermogravimetric analysis (TGA), antibacterial activity, and biocompatibility evaluations. The analysis of variance (ANOVA) was used to confirm the results of the experiments. From FE-SEM images, it was observed that smooth, uniform, and defect-free scaffolds were obtained at 20 kV applied voltage, 15 cm needle-to-collector distance, and 0.5 ml/h flow with an average diameter ranging from 221 to 345 nm. The ultimate tensile strength and Young's modulus of the CS/PEO/35 wt% extract cross-linked scaffold improved by 225 and 381 %, respectively, compared to CS/PEO nanofiber. Adding the 35 wt% extract into the polymer demonstrated that the gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) had a better zone of inhibition test than the gram-positive bacteria (Staphylococcus aureus). Finally, the biocompatibility assay confirmed the proliferative potential of 35 wt% extract within 48 h.
Collapse
Affiliation(s)
- Dehghan Navaei Ardeh
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Arash Montazeri
- Department of Nanotechnology, Faculty of Engineering, University of Guilan, Rasht, Iran.
| | - Hossein Rastegar
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Yeganeh Kari
- Department of Nanotechnology, Faculty of Engineering, University of Guilan, Rasht, Iran
| |
Collapse
|
2
|
Shyam M, Sabina EP. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:49. [PMID: 39162715 PMCID: PMC11335715 DOI: 10.1007/s13659-024-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Arctium lappa, widely recognized as burdock, is a perennial plant that is employed in the realm of traditional Chinese medicine for a wide range of medicinal applications. The herb is rich in bioactive metabolites with therapeutic potential, encompassing polyphenolic antioxidants in its leaves, and flavonoids and fructo-oligosaccharides in its underground parts. Nutraceuticals originating from botanical sources such as Arctium lappa provide supplementary health advantages alongside their nutritional content and have demonstrated effectiveness in the prevention and management of specific ailments. The utilization of Arctium lappa root extract has exhibited encouraging outcomes in addressing hepatotoxicity induced by cadmium, lead, chromium, and acetaminophen, ameliorating liver damage and oxidative stress. Additionally, the root extract displays properties such as antidiabetic, hypolipidemic, aphrodisiac, anti-rheumatic, anti-Alzheimer, and various other pharmacological actions.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother 2023; 158:114104. [PMID: 36516694 DOI: 10.1016/j.biopha.2022.114104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
Collapse
Affiliation(s)
- Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Noha S Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples 80131, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-GrenInstitute, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China.
| |
Collapse
|
4
|
Yazdanian M, Rostamzadeh P, Alam M, Abbasi K, Tahmasebi E, Tebyaniyan H, Ranjbar R, Seifalian A, Moghaddam MM, Kahnamoei MB. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express 2022; 12:75. [PMID: 35705727 PMCID: PMC9200929 DOI: 10.1186/s13568-022-01417-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
Dental caries and oral infections have become a widespread issue in the modern world. This study aimed to investigate the antibacterial, antifungal, and cytotoxicity characteristics of the extracts of Echinacea purpura, Arctium lappa, and the essential oil of Zataria multiflora as a potential herbal mouthwash. The essential oil of Z. multiflora leaves and the extracts of E. purpurea and A. lappa roots were prepared. The characterization was carried out by GC-MS and also, total phenol and flavonoid were assed for all three samples. The antimicrobial and anti-biofilm effects were evaluated against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Lactobacillus acidophilus, Escherichia coli, Staphylococcus aureus, and Candida albicans. The cytotoxic effect of the samples was evaluated on HEK 293 and HDFa cells by MTT test. Thymol and carvacrol contents in EO of Z. multiflora were measured at 31% and 42.2%, respectively. A. lappa had the lowest total phenolic and flavonoid value among the samples. On the other hand, the total phenolic content of Z. multiflora and the total flavonoid content of E. purpurea were the highest. The MIC values of Zataria, Arctium, and Echinacea against S. mutans were 0.011% v/v, 187.5 mg/ml, and 93.75 mg/ml, while MBC were 0.011% v/v, 375 mg/ml, and 187.5 mg/ml, respectively. The formulation showed bactericidal activity against S. mutans in the concentration of 5.86 mg/ml for Echinacea and Burdock extracts and 0.08 µl/ml for EO of Zataria. The formulation significantly affected microbial biofilm formation and induced biofilm degradation. The cell viability percentages were higher than 50% during 24 and 48 h. The formulation had a significant antimicrobial effect on cariogenic bacteria and C. albicans, with the lowest cytotoxic effects. Therefore, this formulation can be an appropriate candidate for mouthwash.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pouya Rostamzadeh
- Scientific Research Center (DSSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran. .,School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine, Commercialization Centre (NanoRegMed Ltd), The London Bioscience Innovation Centre, London, UK
| | | | - Majid Balaei Kahnamoei
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ferreira JC, Reis MB, Coelho GDP, Gastaldello GH, Peti APF, Rodrigues DM, Bastos JK, Campo VL, Sorgi CA, Faccioli LH, Gardinassi LG, Tefé-Silva C, Zoccal KF. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114255. [PMID: 34062248 DOI: 10.1016/j.jep.2021.114255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green propolis is produced by Apis mellifera honeybees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate. This Southern Brazilian native plant and green propolis have been used in traditional medicine to treat gastric diseases, inflammation and liver disorders. AIM OF THE STUDY Investigate the effects of baccharin (Bac) or p-coumaric acid (pCA) isolated from B. dracunculifolia D.C. (Asteraceae) over the inflammation induced by lipopolysaccharide (LPS) in vivo. MATERIALS AND METHODS Inflammation was induced by LPS injection into air-pouches in mice, which were subsequently treated with Bac or pCA. Lavage fluid was collected from air pouches for the quantification of cellular influx via microscopy, and quantification of inflammatory mediators via colorimetric methods, ELISA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS LPS-induced inflammation increased cellular influx and increased the levels of parameters related to vascular permeability and edema formation, such as nitric oxide (NO) and protein extravasation. Moreover, LPS increased the levels of cytokines and eicosanoids in the air-pouches. Importantly, both Bac and pCA suppressed the infiltration of neutrophils, production of NO and protein extravasation. Notably, the compounds promote differential regulation of cytokine and eicosanoid production. CONCLUSIONS Our results suggest that Bac from green propolis directly affects inflammation by inhibiting the production of cytokines and eicosanoids, while pCA may exert direct, but also indirect effects on inflammation by stimulating the production of regulatory effectors such as interkeukin-10 in vivo.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| | - Mouzarllem B Reis
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| | - Giovanna D P Coelho
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| | | | - Ana Paula F Peti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Débora M Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jairo K Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Vanessa L Campo
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carlos A Sorgi
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lúcia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Luiz G Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | - Karina F Zoccal
- Centro Universitário Barão de Mauá (CBM), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Gastaldello GH, Cazeloto ACV, Ferreira JC, Rodrigues DM, Bastos JK, Campo VL, Zoccal KF, Tefé-Silva C. Green Propolis Compounds (Baccarin and p-Coumaric Acid) Show Beneficial Effects in Mice for Melanoma Induced by B16f10. MEDICINES 2021; 8:medicines8050020. [PMID: 33946188 PMCID: PMC8146786 DOI: 10.3390/medicines8050020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Background: Cutaneous melanoma is the most aggressive form of skin cancer, with the worst prognosis, and it affects a younger population than most cancers. The high metastatic index, in more advanced stages, and the high aggressiveness decrease the effectiveness of currently used therapies, such as surgical removal, radiotherapy, cryotherapy, and chemotherapy, used alone or in combination. Based on these disadvantages, research focused on alternative medicine offers great potential for therapeutic innovation. Medicinal plants represent a remarkable source of compounds for the treatment of various diseases. Methods: In this study, we investigated the tumoral behavior of melanoma under treatment with the compounds baccharin and p-coumaric acid, extracted from green propolis, in mice inoculated with B16F10 cells for 26 days. Results: A significant modulation in the number of inflammatory cells recruited to the tumor region and blood in the groups treated with the compounds was observed. In addition, a significant reduction in the amount of blood vessels and mitosis in the neoplastic area was noticed. Conclusions: Through our research, we confirmed that baccharin and coumaric acid, isolated substances from Brazilian green propolis, have a promising anticarcinogenic potential to be explored for the development of new antitumor agents, adhering to the trend of drugs with greater tolerance and biological effectiveness.
Collapse
Affiliation(s)
- Gabriel H. Gastaldello
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, Ribeirão Preto, SP 14090-180, Brazil; (G.H.G.); (A.C.V.C.); (J.C.F.); (V.L.C.); (K.F.Z.)
| | - Ana Caroline V. Cazeloto
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, Ribeirão Preto, SP 14090-180, Brazil; (G.H.G.); (A.C.V.C.); (J.C.F.); (V.L.C.); (K.F.Z.)
| | - Juliana C. Ferreira
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, Ribeirão Preto, SP 14090-180, Brazil; (G.H.G.); (A.C.V.C.); (J.C.F.); (V.L.C.); (K.F.Z.)
| | - Débora Munhoz Rodrigues
- Departamento de Ciências Farmacêuticas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil; (D.M.R.); (J.K.B.)
| | - Jairo Kennup Bastos
- Departamento de Ciências Farmacêuticas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil; (D.M.R.); (J.K.B.)
| | - Vanessa L. Campo
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, Ribeirão Preto, SP 14090-180, Brazil; (G.H.G.); (A.C.V.C.); (J.C.F.); (V.L.C.); (K.F.Z.)
- Departamento de Ciências Farmacêuticas. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil; (D.M.R.); (J.K.B.)
| | - Karina F. Zoccal
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, Ribeirão Preto, SP 14090-180, Brazil; (G.H.G.); (A.C.V.C.); (J.C.F.); (V.L.C.); (K.F.Z.)
| | - Cristiane Tefé-Silva
- Centro Universitário Barão de Mauá (CBM), Rua Ramos de Azevedo, n 423, Ribeirão Preto, SP 14090-180, Brazil; (G.H.G.); (A.C.V.C.); (J.C.F.); (V.L.C.); (K.F.Z.)
- Correspondence:
| |
Collapse
|
7
|
Alhusaini A, Fadda L, Hasan IH, Ali HM, El Orabi NF, Badr AM, Zakaria E, Alenazi AM, Mahmoud AM. Arctium lappa Root Extract Prevents Lead-Induced Liver Injury by Attenuating Oxidative Stress and Inflammation, and Activating Akt/GSK-3β Signaling. Antioxidants (Basel) 2019; 8:582. [PMID: 31771282 PMCID: PMC6943639 DOI: 10.3390/antiox8120582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
Arctium lappa L (A. lappa) is a popular medicinal plant with promising hepatoprotective activity. This study investigated the protective effect of A. lappa root extract (ALRE) on lead (Pb) hepatotoxicity, pointing to its ability to modulate oxidative stress, inflammation, and protein kinase B/Akt/glycogen synthase kinase (GSK)-3β signaling. Rats received 50 mg/kg lead acetate (Pb(Ac)2) and 200 mg/kg ALRE or vitamin C (Vit. C) for 7 days, and blood and liver samples were collected. Pb(Ac)2 provoked hepatotoxicity manifested by elevated serum transaminases and lactate dehydrogenase, and decreased total protein. Histopathological alterations, including distorted lobular hepatic architecture, microsteatotic changes, congestion, and massive necrosis were observed in Pb(II)-induced rats. ALRE ameliorated liver function and prevented all histological alterations. Pb(II) increased hepatic lipid peroxidation (LPO), nitric oxide (NO), caspase-3, and DNA fragmentation, and serum C-reactive protein, tumor necrosis factor-α, and interleukin-1β. Cellular antioxidants, and Akt and GSK-3β phosphorylation levels were decreased in the liver of Pb(II)-induced rats. ALRE ameliorated LPO, NO, caspase-3, DNA fragmentation and inflammatory mediators, and boosted antioxidant defenses in Pb(II)-induced rats. In addition, ALRE activated Akt and inhibited GSK-3β in the liver of Pb(II)-induced rats. In conclusion, ALRE inhibits liver injury in Pb(II)-intoxicated rats by attenuating oxidative injury and inflammation, and activation of Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Laila Fadda
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Iman H. Hasan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Hanaa M. Ali
- Common First Year Deanship, King Saud University, Riyadh 11451, Saudi Arabia;
- Genetic and Cytology Department, National Research Centre, Giza 12622, Egypt
| | - Naglaa F. El Orabi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amira M. Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
- Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Enas Zakaria
- Pharmaceutics Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abeer M. Alenazi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (N.F.E.O.); (A.M.B.); (A.M.A.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|