1
|
Effat H, El Houseini ME, Abohashem RS. The Combined Impact of Curcumin: Piperine and Sorafenib on microRNAs and Different Pathways in Breast Cancer Cells. Indian J Clin Biochem 2025; 40:32-45. [PMID: 39835241 PMCID: PMC11741974 DOI: 10.1007/s12291-024-01212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/13/2024] [Indexed: 01/22/2025]
Abstract
Breast cancer is the most common malignancy in the women. Chemotherapy is a crucial part of breast cancer treatment especially for advanced and metastatic forms of the disease. However, chemotherapy has limitations due to tumor heterogeneity, chemoresistance, and side effects. There is potential in combining chemotherapeutic drugs with natural items to enhance their effectiveness against cancer. In this study, we examined the synergistic effects of combining curcumin: piperine with sorafenib on the progression of breast cancer cells by altering many pathways associated with cancer and regulating the expression of numerous microRNAs. We tested the cytotoxic impact of curcumin: piperine on MCF-7 breast cancer cells using SRB assay. We analyzed the expression levels of selected microRNAs, genes, and proteins related to cancer stem cells, epithelial-mesenchymal transition, apoptosis and cell cycle progression using qPCR, ELISA and flow cytometry techniques. The findings of this study demonstrated that sorafenib and curcumin: piperine together enhances the suppression of MCF-7 cell survival. Molecular genetic analysis revealed that this combination provoked downregulation in oncomirs [miR-21 and miR-155], vimentin, Snail1, Notch, TGF-β1, Smad4, β-catenin1 and Wnt10b genes. Meanwhile, there were upregulation of tumor suppressor miRNAs [miR-28, miR-139 and miR-149] and E-cadherin gene expression level. Also, this combination resulted in a decrease of vimentin, IL-6, STAT3 and MMP-9; an increase of E-cadherin protein levels. Moreover, this combination induced apoptotic cell death and arrested cell cycles at specific phases. This study suggests that the combination of sorafenib and curcumin: piperine can combat breast cancer by modulating several microRNAs and signaling pathways involved in the development and progression of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-024-01212-0.
Collapse
Affiliation(s)
- Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, 1, Kasr El Eini Street Fom El Khalig, Cairo, 11796 Egypt
| | - Motawa E. El Houseini
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, 1, Kasr El Eini Street Fom El Khalig, Cairo, 11796 Egypt
| | - Rehab S. Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab, Centre of Excellence for Advanced Science, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Wiraswati HL, Ma'ruf IF, Sharifi-Rad J, Calina D. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential. Biofactors 2025; 51:e2134. [PMID: 39467259 DOI: 10.1002/biof.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action. Piperine, a bioactive compound derived from Piper species, is gaining attention due to its unique dual role in directly inhibiting tumor growth and enhancing the bioavailability of chemotherapeutic drugs. Unlike conventional treatments, Piperine exhibits a novel mechanism of action by modulating multiple signaling pathways, including apoptosis and autophagy, with low toxicity. Additionally, Piperine acts as a bioenhancer by improving the absorption and effectiveness of other anticancer agents, reducing the required dosage, and minimizing side effects. Therefore, this review aims to visualize a summary of Piperine sources, phytochemistry, chemical structure-anticancer activity relationship, anticancer activities of semi-synthetic derivatives, pharmacokinetic and bioavailability, in vitro and in vivo preclinical studies, mechanism of antitumor action, human clinical trials, toxicity, side effects, and safety of Piperine. References were collected from the Pubmed/MedLine database (https://pubmed.ncbi.nlm.nih.gov/) with the following keywords: "Piperine anticancer," "Piperine derivatives," "Piperine antitumor mechanism" and "Piperine pharmacokinetic and bioavailability," after filter process by inclusion and exclusion criteria, 101 were selected from 444 articles. From 2013 to 2023, there were numerous studies regarding preclinical studies of Piperine of various cell lines, including breast cancer, prostate cancer, lung cancer, melanoma, cervical cancer, gastric cancer, osteosarcoma, colon cancer, hepatocellular carcinoma, ovarian cancer, leukemia, colorectal cancer, and hypopharyngeal carcinoma. In vivo, the anticancer study has also been conducted on some animal models, such as Ehrlich carcinoma-bearing mice, Ehrlich ascites carcinoma cells-bearing Balbc mice, hepatocellular carcinoma-bearing Wistar rat, A375SM cells-bearing mice, A375P cells-bearing mice, SNU-16 cells-bearing BalbC mice, and HGC-27-bearing baby mice. Treatment with this compound leads to cell proliferation inhibition and induction of apoptosis. Piperine has been used for clinical trials of diseases, but no cancer patient report exists. Various semi-synthetic derivatives of Piperine show efficacy as an anticancer drug across multiple cell lines. Piperine shows promise for use in cancer clinical trials, either as a standalone treatment or as a bioenhancer. Its bioenhancer properties may enhance the efficacy of existing chemotherapeutic agents, providing a valuable foundation for developing new anticancer therapies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma'ruf
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
3
|
Hakeem AN, El-Kersh DM, Hammam O, Elhosseiny A, Zaki A, Kamel K, Yasser L, Barsom M, Ahmed M, Gamal M, Attia YM. Piperine enhances doxorubicin sensitivity in triple-negative breast cancer by targeting the PI3K/Akt/mTOR pathway and cancer stem cells. Sci Rep 2024; 14:18181. [PMID: 39107323 PMCID: PMC11303729 DOI: 10.1038/s41598-024-65508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks an actionable target with limited treatment options beyond conventional chemotherapy. Therapeutic failure is often encountered due to inherent or acquired resistance to chemotherapy. Previous studies implicated PI3K/Akt/mTOR signaling pathway in cancer stem cells (CSCs) enrichment and hence chemoresistance. The present study aimed at investigating the potential effect of piperine (PIP), an amide alkaloid isolated from Piper nigrum, on enhancing the sensitivity of TNBC cells to doxorubicin (DOX) in vitro on MDA-MB-231 cell line and in vivo in an animal model of Ehrlich ascites carcinoma solid tumor. Results showed a synergistic interaction between DOX and PIP on MDA-MB-231 cells. In addition, the combination elicited enhanced suppression of PI3K/Akt/mTOR signaling that paralleled an upregulation in this pathway's negative regulator, PTEN, along with a curtailment in the levels of the CSCs surrogate marker, aldehyde dehydrogenase-1 (ALDH-1). Meanwhile, in vivo investigations demonstrated the potential of the combination regimen to enhance necrosis while downregulating PTEN and curbing PI3K levels as well as p-Akt, mTOR, and ALDH-1 immunoreactivities. Notably, the combination failed to change cleaved poly-ADP ribose polymerase levels suggesting a pro-necrotic rather than pro-apoptotic mechanism. Overall, these findings suggest a potential role of PIP in decreasing the resistance to DOX in vitro and in vivo, likely by interfering with the PI3K/Akt/mTOR pathway and CSCs.
Collapse
Affiliation(s)
- Andrew N Hakeem
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dina M El-Kersh
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Aliaa Elhosseiny
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Amr Zaki
- Graduate Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Kohinour Kamel
- Graduate Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Lidia Yasser
- Graduate Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marina Barsom
- Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menatallah Ahmed
- Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Gamal
- Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| |
Collapse
|
4
|
Gusson-Zanetoni JP, Cardoso LP, de Sousa SO, de Melo Moreira Silva LL, de Oliveira Martinho J, Henrique T, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer. Int J Mol Sci 2024; 25:5762. [PMID: 38891950 PMCID: PMC11172343 DOI: 10.3390/ijms25115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024] Open
Abstract
Piperine, an active plant alkaloid from black pepper (Piper nigrum), has several pharmacological effects, namely antioxidant, anti-inflammatory and immunomodulatory effects, which involve inhibiting molecular events associated with various stages of cancer development. The aim of this study was to investigate the molecular mechanisms of action of piperine in relation to its potential anticancer effect on head and neck cancer cells. Parameters related to neoplastic potential and cytokine, protein and gene expression were investigated in head and neck cancer cell lines (HEp-2 and SCC-25) treated with piperine. The results of the tests indicated that piperine modified morphology and inhibited viability and the formation of cell colonies. Piperine promoted genotoxicity by triggering apoptosis and cell cycle arrest in the G2/M and S phases. A decrease in cell migration was also observed, and there was decreased expression of MMP2/9 genes. Piperine also reduced the expression of inflammatory molecules (PTGS2 and PTGER4), regulated the secretion of cytokines (IFN-γ and IL-8) and modulated the expression of ERK and p38. These results suggest that piperine exerts anticancer effects on tumor cells by regulating signaling pathways associated with head and neck cancer.
Collapse
Affiliation(s)
- Juliana Prado Gusson-Zanetoni
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Luana Pereira Cardoso
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Stefanie Oliveira de Sousa
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Laura Luciana de Melo Moreira Silva
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Júlia de Oliveira Martinho
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, Brazil; (T.H.); (E.H.T.)
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, Brazil; (T.H.); (E.H.T.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Flávia Cristina Rodrigues-Lisoni
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| |
Collapse
|
5
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
6
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Liu S, Li L, Ren D. Anti-Cancer Potential of Phytochemicals: The Regulation of the Epithelial-Mesenchymal Transition. Molecules 2023; 28:5069. [PMID: 37446730 DOI: 10.3390/molecules28135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes significantly to the metastasis, invasion, and development of treatment resistance in cancer cells. Current research has demonstrated that phytochemicals are emerging as a potential source of safe and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT in the progression of cancers, then summarize phytochemicals with diverse structures that could block the EMT process in different types of cancer. Hopefully, these will provide some guidance for future research on phytochemicals targeting EMT.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
8
|
Ramundo V, Palazzo ML, Aldieri E. TGF-β as Predictive Marker and Pharmacological Target in Lung Cancer Approach. Cancers (Basel) 2023; 15:cancers15082295. [PMID: 37190223 DOI: 10.3390/cancers15082295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer (LC) represents the leading cause of cancer incidence and mortality worldwide. LC onset is strongly related to genetic mutations and environmental interactions, such as tobacco smoking, or pathological conditions, such as chronic inflammation. Despite advancement in knowledge of the molecular mechanisms involved in LC, this tumor is still characterized by an unfavorable prognosis, and the current therapeutic options are unsatisfactory. TGF-β is a cytokine that regulates different biological processes, particularly at the pulmonary level, and its alteration has been demonstrated to be associated with LC progression. Moreover, TGF-β is involved in promoting invasiveness and metastasis, via epithelial to mesenchymal transition (EMT) induction, where TGF-β is the major driver. Thus, a TGF-β-EMT signature may be considered a potential predictive marker in LC prognosis, and TGF-β-EMT inhibition has been demonstrated to prevent metastasis in various animal models. Concerning a LC therapeutic approach, some TGF-β and TGF-β-EMT inhibitors could be used in combination with chemo- and immunotherapy without major side effects, thereby improving cancer therapy. Overall, targeting TGF-β may be a valid possibility to fight LC, both in improving LC prognosis and cancer therapy, via a novel approach that could open up new effective strategies against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | | |
Collapse
|
9
|
da Costa KM, Freire-de-Lima L, da Fonseca LM, Previato JO, Mendonça-Previato L, Valente RDC. ABCB1 and ABCC1 Function during TGF-β-Induced Epithelial-Mesenchymal Transition: Relationship between Multidrug Resistance and Tumor Progression. Int J Mol Sci 2023; 24:ijms24076046. [PMID: 37047018 PMCID: PMC10093952 DOI: 10.3390/ijms24076046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-β-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Biologia Celular de Glicoconjugados, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25250-470, Brazil
| |
Collapse
|
10
|
Reis JSD, Santos MARDC, da Costa KM, Freire-de-Lima CG, Morrot A, Previato JO, Previato LM, da Fonseca LM, Freire-de-Lima L. Increased Expression of the Pathological O-glycosylated Form of Oncofetal Fibronectin in the Multidrug Resistance Phenotype of Cancer Cells. Matrix Biol 2023; 118:47-68. [PMID: 36882122 DOI: 10.1016/j.matbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Changes in protein glycosylation are a hallmark of transformed cells and modulate numerous phenomena associated with cancer progression, such as the acquisition of multidrug resistance (MDR) phenotype. Different families of glycosyltransferases and their products have already been described as possible modulators of the MDR phenotype. Among the glycosyltransferases intensively studied in cancer research, UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 (pp-GalNAc-T6), which is widely expressed in many organs and tissues, stands out. Its influence in several events associated with kidney, oral, pancreatic, renal, lung, gastric and breast cancer progression has already been described. However, its participation in the MDR phenotype has never been studied. Here, we demonstrate that human breast adenocarcinoma MCF-7 MDR cell lines, generated by chronic exposure to doxorubicin, in addition to exhibiting increased expression of proteins belonging to the ABC superfamily (ABCC1 and ABCG2), and anti-apoptotic proteins (Blcl-2 and Bcl-xL), also present high expression of pp-GalNAc-T6, the enzyme currently proposed as the main responsible for the biosynthesis of oncofetal fibronectin (onf-FN), a major extracellular matrix component expressed by cancer cells and embryonic tissues, but absent in healthy cells. Our results show that onf-FN, which is generated by the addition of a GalNAc unit at a specific threonine residue inside the type III homology connective segment (IIICS) domain of FN, is strongly upregulated during the acquisition of the MDR phenotype. Also, the silencing of pp-GalNAc-T6, not only compromises the expression of the oncofetal glycoprotein, but also made the MDR cells more sensitive to all anticancer drugs tested, partially reversing the MDR phenotype. Taken together, our results demonstrate for the first time the upregulation of the O-glycosylated oncofetal fibronectin, as well as the direct participation of pp-GalNAc-T6 during the acquisition of a MDR phenotype in a breast cancer model, giving credence to the hypothesis that in transformed cells, glycosyltransferases and/or their products, such as unusual extracellular matrix glycoproteins can be used as potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Jhenifer Santos Dos Reis
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcos André Rodrigues da Costa Santos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Alexandre Morrot
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Rio de Janeiro, RJ 21941-902, Brazil; Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ 21040-360, Brazil
| | - Jose Osvaldo Previato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Lucia Mendonça Previato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
11
|
Pressete CG, Viegas FPD, Campos TG, Caixeta ES, Hanemann JAC, Ferreira-Silva GÁ, Zavan B, Aissa AF, Miyazawa M, Viegas-Jr C, Ionta M. Piperine-Chlorogenic Acid Hybrid Inhibits the Proliferation of the SK-MEL-147 Melanoma Cells by Modulating Mitotic Kinases. Pharmaceuticals (Basel) 2023; 16:145. [PMID: 37259298 PMCID: PMC9965075 DOI: 10.3390/ph16020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, with different pharmacophore fragments combined in the same scaffold, is an interesting strategy for obtaining new multi-target and more effective anticancer drugs. We designed nine hybrid compounds bearing piperine and chlorogenic acid pharmacophoric groups and evaluated their antitumoral potential on melanoma cells with distinct mutational profiles SK-MEL-147, CHL-1 and WM1366. We identified the compound named PQM-277 (3a) to be the most cytotoxic one, inhibiting mitosis progression and promoting an accumulation of cells in pro-metaphase and metaphase by altering the expression of genes that govern G2/M transition and mitosis onset. Compound 3a downregulated FOXM1, CCNB1, CDK1, AURKA, AURKB, and PLK1, and upregulated CDKN1A. Molecular docking showed that 3a could interact with the CUL1-RBX1 complex, which activity is necessary to trigger molecular events essential for FOXM1 transactivation and, in turn, G2/M gene expression. In addition, compound 3a effectively induced apoptosis by increasing BAX/BCL2 ratio. Our findings demonstrate that 3a is an important antitumor candidate prototype and support further investigations to evaluate its potential for melanoma treatment, especially for refractory cases to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
| | - Flávia Pereira Dias Viegas
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Thâmara Gaspar Campos
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | | | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Claudio Viegas-Jr
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| |
Collapse
|
12
|
Piperine Attenuates Cigarette Smoke-Induced Oxidative Stress, Lung Inflammation, and Epithelial-Mesenchymal Transition by Modulating the SIRT1/Nrf2 Axis. Int J Mol Sci 2022; 23:ijms232314722. [PMID: 36499047 PMCID: PMC9740588 DOI: 10.3390/ijms232314722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Piperine (PIP) is a major phytoconstituent in black pepper which is responsible for various pharmacological actions such as anti-inflammatory, antioxidant, and antitumor activity. To investigate the effects and mechanisms of PIP on cigarette smoke (CS)-induced lung pathology using both in-vitro and in-vivo models. BEAS-2B and A549 cells were exposed to CS extract (CSE) for 48 h; BALB/c mice were exposed to CS (9 cigarettes/day, 4 days) to induce features of airway disease. PIP at doses of (0.25, 1.25, and 6.25 µM, in vitro; 1 and 10 mg/kg, in vivo, i.n) and DEX (1 µM, in vitro; 1 mg/kg, in vivo, i.n) were used to assess cytotoxicity, oxidative stress, epithelial−mesenchymal transition (EMT), Sirtuin1 (SIRT1), inflammation-related cellular signaling, and lung function. PIP treatment protects cells from CSE-induced lung epithelial cell death. PIP treatment restores the epithelial marker (p < 0.05) and decreases the mesenchymal, inflammatory markers (p < 0.05) in both in vitro and in vivo models. The PIP treatment improves the altered lung function (p < 0.05) in mice induced by CS exposure. Mechanistically, PIP treatment modulates SIRT1 thereby reducing the inflammatory markers such as IL-1β, IL-6 and TNF-α (p < 0.05) and enhancing the epigenetic marker HDAC2 (p < 0.05) and antioxidant marker Nrf2 (p < 0.05) expressions. Thus, PIP alleviates pulmonary inflammation by modulating the SIRT1-mediated inflammatory cascade, inhibits EMT, and activates Nrf2 signaling.
Collapse
|
13
|
Bao T, Feng L, Cho S, Yu H, Jin W, Dai L, Zhang J, Bai L, Fu M, Chen Y. RNA-Seq Reveals Protective Mechanisms of Mongolian Medicine Molor-Dabos-4 on Acute Indomethacin-Induced Gastric Ulcers in Rats. Genes (Basel) 2022; 13:genes13101740. [PMID: 36292625 PMCID: PMC9602025 DOI: 10.3390/genes13101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to apply transcriptomics to determine how Molor-Dabos-4 (MD-4) protects healthy rats against indomethacin (IND)-induced gastric ulcers and to identify the mechanism behind this protective effect. Rats were pretreated with MD-4 (0.3, 1.5, or 3 g/kg per day) for 21 days before inducing gastric ulcers by oral administration with indomethacin (30 mg/kg). Unulcerated and untreated healthy rats were used as controls. Effects of the treatment were assessed based on the ulcer index, histological and pathological examinations, and indicators of inflammation, which were determined by enzyme-linked immunosorbent assay. Transcriptomic analysis was performed for identifying potential pharmacological mechanisms. Eventually, after identifying potential target genes, the latter were validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). After pretreatment with MD-4, gastric ulcers, along with other histopathological features, were reduced. MD-4 significantly (p < 0.05) increased the superoxide dismutase (SOD) levels in ulcers and reduced pepsin, TNF-α, and IL-6 levels. RNA-seq analysis identified a number of target genes on which MD-4 could potentially act. Many of these genes were involved in pathways that were linked to anti-inflammatory and antioxidant responses, and other protective mechanisms for the gastric mucosa. qRT-PCR showed that altered expression of the selected genes, such as Srm, Ryr-1, Eno3, Prkag3, and Eef1a2, was consistent with the transcriptome results. MD-4 exerts protective effects against IND-induced gastric ulcers by reducing inflammatory cytokines and pepsin and increasing the expression of SOD levels. Downregulation of Srm, Ryr-1, Eno3, Prkag3, and Eef1a2 genes involved in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1 signaling pathway, oxytocin signaling pathway, and legionellosis are possibly involved in MD-4-mediated protection against gastric ulcers.
Collapse
Affiliation(s)
- Terigele Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lan Feng
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Sungbo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongzhen Yu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wenjie Jin
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lili Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junqing Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Minghai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Correspondence: (M.F.); (Y.C.)
| | - Yongsheng Chen
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Correspondence: (M.F.); (Y.C.)
| |
Collapse
|
14
|
Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39:247-259. [DOI: 10.1007/s10719-022-10042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
|
15
|
Piperine analogs arrest c-myc gene leading to downregulation of transcription for targeting cancer. Sci Rep 2021; 11:22909. [PMID: 34824301 PMCID: PMC8617303 DOI: 10.1038/s41598-021-01529-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
G-quadruplex (G4) structures are considered a promising therapeutic target in cancer. Since Ayurveda, Piperine has been known for its medicinal properties. Piperine shows anticancer properties by stabilizing the G4 motif present upstream of the c-myc gene. This gene belongs to a group of proto-oncogenes, and its aberrant transcription drives tumorigenesis. The transcriptional regulation of the c-myc gene is an interesting approach for anticancer drug design. The present study employed a chemical similarity approach to identify Piperine similar compounds and analyzed their interaction with cancer-associated G-quadruplex motifs. Among all Piperine analogs, PIP-2 exhibited strong selectivity, specificity, and affinity towards c-myc G4 DNA as elaborated through biophysical studies such as fluorescence emission, isothermal calorimetry, and circular dichroism. Moreover, our biophysical observations are supported by molecular dynamics analysis and cellular-based studies. Our study showed that PIP-2 showed higher toxicity against the A549 lung cancer cell line but lower toxicity towards normal HEK 293 cells, indicating increased efficacy of the drug at the cellular level. Biological evaluation assays such as TFP reporter assay, quantitative real-time PCR (qRT- PCR), and western blotting suggest that the Piperine analog-2 (PIP-2) stabilizes the G-quadruplex motif located at the promoter site of c-myc oncogene and downregulates its expression. In conclusion, Piperine analog PIP-2 may be used as anticancer therapeutics as it affects the c-myc oncogene expression via G-quadruplex mediated mechanism.
Collapse
|
16
|
Abdelhamid AM, Selim A, Zaafan MA. The Hepatoprotective Effect of Piperine Against Thioacetamide-Induced Liver Fibrosis in Mice: The Involvement of miR-17 and TGF-β/Smads Pathways. Front Mol Biosci 2021; 8:754098. [PMID: 34778375 PMCID: PMC8585739 DOI: 10.3389/fmolb.2021.754098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Liver fibrosis is characterized by a series of events including activation of quiescent hepatic stellate cells (HSCs) into proinflammatory, contractile, and fibrogenic myofibroblasts, which is the primary trigger for the fibrogenesis process. HSC activation involves many signaling pathways such as the TGF-β/smads pathway. Specific microRNAs have been identified to play a crucial role in the activation of HSCs via various signaling pathways. Piperine has recently been studied as a promising anti-fibrotic agent against pancreatic fibrosis through altering the TGF-β1/Smad pathway. Hence, the current study evaluated the beneficial effects of piperine in thioacetamide-induced liver fibrosis in mice through the modulation of miRNA-17 and TGF-β/smads pathways. Mice were allocated into three groups randomly. Thioacetamide was used to induce liver fibrosis for 6 weeks. Starting from the fourth week of the experiment, mice were treated with piperine daily for 21 days. Piperine treatment resulted in a significant downregulation of miRNA-17 expression, leading to the restoration of smad-7 accompanied with marked inhibition of TGF-β/smads signaling with further suppression of the activated HSCs and collagen deposition in the hepatocytes. In conclusion, piperine has the potential to be a promising therapeutic drug for the treatment of liver fibrosis through inhibiting the TGF-β/smads pathway.
Collapse
Affiliation(s)
- Amr M Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Ayman Selim
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Mai A Zaafan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
17
|
Shu G, Yusuf A, Dai C, Sun H, Deng X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4: roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct 2021; 12:11686-11703. [PMID: 34730139 DOI: 10.1039/d1fo02657g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piperine (PIP) is an alkaloid derived from peppercorns. Herein, we assessed its effects on hepatocyte EMT and HSC activation in vitro and CCl4-elicited liver fibrosis in mice. Further experiments were performed to unveil the molecular mechanisms underlying the hepatoprotective activity of PIP. We found that PIP inhibited TGF-β1-provoked AML-12 hepatocyte EMT and LX-2 HSC activation. Mechanistically, in AML-12 and LX-2 cells, PIP evoked Nrf2 nuclear translocation and increased transcriptions of Nrf2-responsive antioxidative genes. These events decreased TGF-β1-induced production of ROS. Moreover, PIP increased the expression of Smad7, suppressed phosphorylation and nuclear translocation of Smad2/3, and decreased the transcriptions of Smad2/3-downstream genes. Knockdown of Nrf2 abrogated the protective activity of PIP against TGF-β1. Modulatory effects of PIP on the TGF-β1/Smad cascade were also crippled, which suggested that activation of Nrf2 played critical roles in the regulatory effects of PIP on TGF-β1/Smad signaling. Experiments in vivo unveiled that PIP ameliorated mouse liver fibrosis provoked by CCl4. PIP modulated the intrahepatic contents of the markers of EMT and HSC activation. In mouse livers, PIP activated Nrf2 signaling and reduced Smad2/3-dependent gene transcriptions. Our findings collectively suggested PIP as a new chemical entity with the capacity of alleviating liver fibrosis. The activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis are implicated in the hepatoprotective activity of PIP.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Takegahara K, Usuda J, Inoue T, Sonokawa T, Matsui T, Matsumoto M. Antiaging gene Klotho regulates epithelial-mesenchymal transition and increases sensitivity to pemetrexed by inducing lipocalin-2 expression. Oncol Lett 2021; 21:418. [PMID: 33841579 PMCID: PMC8020392 DOI: 10.3892/ol.2021.12679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is considered to serve an important role in the metastatic/invasive ability of cancer cells, in the acquisition of drug resistance, and in metabolic reprogramming. In the present study, it was hypothesized that the Klotho gene is involved in the metastatic/invasive ability of lung cancer. We previously reported an association between Klotho expression and overall survival in patients with small cell lung cancer and large cell neuroendocrine cancer. We also found that Klotho expression was associated with EMT-related molecules in lung squamous cell carcinoma. The present study aimed to analyze the function of the Klotho gene and to elucidate its relevance to the regulation of the EMT. For this purpose, GFP-Klotho plasmids were transfected into lung adenocarcinoma cells (A549) and cell lines with stable expression (A549/KL-1 and A549/KL-2) were established. A549/KL-1 cells expressed higher levels of Klotho protein by western blot analysis compared with A549/KL-2 cells. In western blotting of A549 and A549/KL-1 cells, the expression of the mesenchymal marker N-cadherin was found to be completely inhibited in A549/KL-1 cells suggesting that Klotho expression may regulate the EMT in cancer cells via the inhibition of N-cadherin. The results of the sensitivity tests demonstrated that A549/KL-1 cells were significantly more sensitive to pemetrexed compared with A549 cells (IC50 A549/KL-1 vs. A549 cells, 0.1 µM vs. 0.7 µM). The results of the microarray analysis demonstrated that a very high level of lipocalin-2 (LCN2) expression was induced in the A549/KL-1 cells. Klotho overexpression completely suppressed the expression of mesenchymal markers, such as N-cadherin and Snail1 (Snail). The results of the present study suggested that there may be a new mechanism of action for the antitumor effects of pemetrexed, namely, LCN2-mediated modulation of N-cadherin expression. Klotho expression during cancer treatment has great potential as a predictor for efficacy of pemetrexed and as a factor in the selection of personalized medicine for postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- Kyoshiro Takegahara
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takuma Matsui
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Mitsuo Matsumoto
- Department of Thoracic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
19
|
Banerjee S, Katiyar P, Kumar V, Saini SS, Varshney R, Krishnan V, Sircar D, Roy P. Black pepper and piperine induce anticancer effects on leukemia cell line. Toxicol Res (Camb) 2021; 10:169-182. [PMID: 33884168 PMCID: PMC8045589 DOI: 10.1093/toxres/tfab001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 11/12/2022] Open
Abstract
The black pepper, most commonly used in Indian cuisines for ages, is considered as "king of spices." The present study evaluates the anticancer potential of black pepper and its main constituent, i.e. alkaloid piperine, against human leukemia cell line, K-562 cells. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of piperine in black pepper extract. The methanolic extract of black pepper (BP-M) and pure piperine (PIP) showed a strong cytotoxic effect against this cell line. Both BP-M and PIP generated apoptotic bodies in K-562 cells and caused nuclear condensation as visualized by fluorescent microscopy, which was further confirmed by flow cytometry analysis. BP-M and PIP also generated reactive oxygen species in K-562 cells as established by flow cytometry. The translation of Bax, caspase-3 and caspase-9 genes was found to be upregulated with subsequent downregulation of Bcl-2 gene. The anti-proliferative effect of both BP-M and PIP was also observed by trypan blue staining and was further confirmed by the downregulated expression of proliferating cell nuclear antigen (PCNA). The molecular docking studies showed the binding of PIP with PCNA and Bcl-2 and supported the in vitro findings. The docking studies also proposed the binding of PIP to ADP binding pocket of Apaf-1 protein. Taken together, these findings signify the anticancer potential of both black pepper and PIP, thus proposing black pepper as a potent nutraceutical for preventing the progression of chronic myeloid leukemia.
Collapse
Affiliation(s)
- Somesh Banerjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vijay Kumar
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ritu Varshney
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
20
|
Wang J, Zhao X, Feng W, Li Y, Peng C. Inhibiting TGF-[Formula: see text] 1-Mediated Cellular Processes as an Effective Strategy for the Treatment of Pulmonary Fibrosis with Chinese Herbal Medicines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1965-1999. [PMID: 34961416 DOI: 10.1142/s0192415x21500932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xingtao Zhao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yunxia Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
21
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
22
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|
23
|
da Fonseca LM, Calvalhan DM, Previato JO, Mendonça Previato L, Freire-de-Lima L. Resistance to paclitaxel induces glycophenotype changes and mesenchymal-to-epithelial transition activation in the human prostate cancer cell line PC-3. Tumour Biol 2020; 42:1010428320957506. [PMID: 32914709 DOI: 10.1177/1010428320957506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.
Collapse
Affiliation(s)
| | - Danilo Macedo Calvalhan
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|