1
|
Wu J, Wen M, Wang Z, Yu K, Jin X, Liu C, Song Q, Zhang G, Wu B, Li Y. Network pharmacological analysis and experimental verification of Zisheng Tongmai decoction in the treatment of premature ovarian failure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3667-3680. [PMID: 39352532 DOI: 10.1007/s00210-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 04/10/2025]
Abstract
Premature ovarian failure (POF) is a disease that seriously jeopardizes women's physical and mental health worldwide. Zisheng Tongmai decoction (ZSTMD), a famous Traditional Chinese Medicine (TCM) formula, has a marked effect on the clinical treatment of POF. This study investigated the potential mechanism of ZSTMD to improve POF through network pharmacology and experimental validation. The active components, key targets and potential mechanisms of ZSTMD against POF were predicted by network pharmacology and molecular docking. The POF model was induced in rats by cyclophosphamide (CTX) and subsequently gavaged with different doses of ZSTMD. KGN cells were treated with different concentrations of quercetin and CTX. Histopathological were observed via hematoxylin and eosin (H&E) staining and immunofluorescence staining. Serum estrogen levels were detected via ELISA. Protein expression was detected via Western blot. We identified quercetin as the main active ingredients targeting VEGFA. Molecular docking showed that VEGFA interacted well with the main active components of ZSTMD. In vivo experiments, ZSTMD significantly increased body weight and the ovarian index, significantly increased E2 and AMH, and decreased FSH and LH in POF rats. Histologic results showed that ZSTMD increased the number of follicles and vascular density in the ovary. It also increased VEGFA and CD31 protein expression. In vitro experiments, quercetin suppressed CTX-induced apoptosis in KGN cells and increased VEGFA protein expression. Our study demonstrated that ZSTMD improves POF by promoting angiogenesis through VEGFA target.
Collapse
Affiliation(s)
- Jiaru Wu
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Mengjie Wen
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Zecheng Wang
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Kun Yu
- School of Experimental Center, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Xinyue Jin
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Chenxu Liu
- School of Integrative Medicine, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Qiuhang Song
- School of Basic Medical Sciences, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Guohong Zhang
- School of Basic Medical Sciences, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China
| | - Beibei Wu
- Department of Dermatology, Hebei Province Chinese Medicine Hospital. Shijiazhuang, Hebei, China
| | - Yunfeng Li
- School of Basic Medical Sciences, Hebei University of Chinese Medicine. Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Batsukh T, Tsend-Ayush A. Herbal drug‑based nanotherapy for hepatocellular carcinoma: Quercetin‑contained nanocarrier as a multipurpose therapeutic agent against hepatocellular carcinoma (Review). Biomed Rep 2025; 22:29. [PMID: 39720296 PMCID: PMC11668132 DOI: 10.3892/br.2024.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, with hepatocellular carcinoma (HCC) accounting for ~75% of all primary liver cancers and exhibiting a high incidence rate. Unfortunately, the response rate to chemotherapeutic agents for liver cancer is relatively low, primarily due to the development of drug resistance and the lack of targeted therapeutic agents. The present study focused on the anticancer mechanisms of quercetin and the development of innovative nanocarriers designed to enhance its efficacy against HCC while mitigating drug resistance. Quercetin demonstrates a diverse array of biological activities, making it a promising candidate for therapeutic applications. Its mechanisms include inhibition of tumor cell cycle, induction of apoptosis, modulation of reactive oxygen species and inhibition of chemotherapeutic resistance. Given these properties, extensive research has been conducted in pharmaceutical engineering to develop well-designed nanocarriers that incorporate quercetin. These nanocarriers aim to improve the bioavailability and targeting of quercetin, thereby enhancing its therapeutic efficacy against HCC and overcoming the challenges associated with anticancer drug resistance. Through this approach, quercetin could potentially play a pivotal role in the future of HCC treatment, providing a synergistic effect when combined with traditional chemotherapy leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tserendolgor Batsukh
- Department of Pharmacy Administration and Technology, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 18130, Mongolia
| | - Altansukh Tsend-Ayush
- Department of Molecular Biology and Genetics, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| |
Collapse
|
3
|
Zhang P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023; 15:3683. [PMID: 37686715 PMCID: PMC10490368 DOI: 10.3390/nu15173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Allergic diseases are a set of chronic inflammatory disorders of lung, skin, and nose epithelium characterized by aberrant IgE and Th2 cytokine-mediated immune responses to exposed allergens. The prevalence of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis, has increased dramatically worldwide in the past several decades. Evidence suggests that diet and nutrition play a key role in the development and severity of allergic diseases. Dietary components can differentially regulate allergic inflammation pathways through host and gut microbiota-derived metabolites, therefore influencing allergy outcomes in positive or negative ways. A broad range of nutrients and dietary components (vitamins A, D, and E, minerals Zn, Iron, and Se, dietary fiber, fatty acids, and phytochemicals) are found to be effective in the prevention or treatment of allergic diseases through the suppression of type 2 inflammation. This paper aims to review recent advances in the role of diet and nutrition in the etiology of allergies, nutritional regulation of allergic inflammation, and clinical findings about nutrient supplementation in treating allergic diseases. The current literature suggests the potential efficacy of plant-based diets in reducing allergic symptoms. Further clinical trials are warranted to examine the potential beneficial effects of plant-based diets and anti-allergic nutrients in the prevention and management of allergic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 6663030, China
| |
Collapse
|
4
|
Lee G, Kang HR, Kim A, Park JH, Lee MJ, Kim SM. Preventive effects of quercetin against foot-and-mouth disease virus in vitro and in vivo by inducing type I interferon. Front Microbiol 2023; 14:1121830. [PMID: 37250022 PMCID: PMC10213290 DOI: 10.3389/fmicb.2023.1121830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Foot-and-mouth disease (FMD) is an acute contagious infectious disease that affects cloven-hoofed animals. Although current emergency FMD vaccines only take effect 7 days after vaccination, antiviral agents, such as quercetin, which is a common flavonoid, could reduce the spread of FMD virus (FMDV) during outbreaks. We investigated the in vitro and in vivo antiviral effects of quercetin against FMDV. Analysis of viral copy numbers showed that quercetin had a dose-dependent inhibitory effect on FMDV at concentrations between 19.5 and 1,250 μM in porcine cells. In addition, we observed a quercetin-induced interferon (IFN)-α protein and interferon-stimulated gene (ISG) upregulation in swine cells. Enzyme-linked immunosorbent assay of sera revealed that quercetin induces the production of IFN-α, IFN-β, IFN-γ, interleukin (IL)-12, and IL-15 in mice. Inoculation of mice with quercetin or a combination of quercetin with an inactivated FMD vaccine enhanced both the survival rate and neutralizing antibody titer. Therefore, we suggest the use of quercetin as a novel and effective antiviral agent for controlling FMDV infection; however, further investigation of its application in livestock is required.
Collapse
|
5
|
Otaki A, Furuta A, Asano K. Quercetin-Induced Enhancement of Nasal Epithelial Cells' Ability to Produce Clara Cell 10-kD Protein In Vitro and In Vivo. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10040028. [PMID: 37103783 PMCID: PMC10143719 DOI: 10.3390/medicines10040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Background: Quercetin, a polyphenolic flavonoid found in various plants and foods, is known to have antioxidant, antiviral and anticancer effects. Although quercetin is well known to exert anti-inflammatory and anti-allergic effects, the precise mechanisms by which quercetin favorably modifies the clinical status of allergic diseases, such as allergic rhinitis (AR), remain unclear. The present study examined whether quercetin could modulate the production of the endogenous anti-inflammatory molecule, Clara cell 10-kD protein (CC10), in vitro and in vivo. Methods: Human nasal epithelial cells (1 × 105 cells/mL) were stimulated with 20 ng/mL of tumor necrosis factor-alpha (TNF) in the presence of quercetin for 24 h. CC10 levels in culture supernatants were examined by ELISA. Sprague Dawley rats were sensitised with toluene 2,4-diisocyanate (TDI) by intranasal instillation of 10% TDI in ethyl acetate at a volume of 5.0 μL once daily for five days. This sensitisation procedure was repeated after an interval of two days. The rats were treated with different dosages of quercetin once daily for five days starting on the 5th day following the second sensitization. Nasal allergy-like symptoms induced by the bilateral application of 5.0 μL of 10% TDI were assessed by counting sneezing and nasal-rubbing behaviours for 10 min immediately after the TDI nasal challenge. The levels of CC10 in nasal lavage fluids obtained 6 h after TDI nasal challenge were examined using ELISA. Results: The treatment of cells with low doses of quercetin (<2.5 μM) scarcely affected TNF-induced CC10 production from nasal epithelial cells. However, the ability of nasal epithelial cells to produce CC10 after TNF stimulation significantly increased on treatment with quercetin doses (>5.0 μM). The oral administration of quercetin (>25 mg/kg) for five days significantly increased the CC10 content in nasal lavage fluids and attenuated the nasal symptoms induced by the TDI nasal challenge. Conclusions: Quercetin inhibits AR development by increasing the ability of nasal epithelial cells to produce CC10.
Collapse
Affiliation(s)
- Amane Otaki
- Graduate School of Nursing and Rehabilitation Sciences, Showa Universityl, Midori-ku, Yokohama 226-8555, Japan
| | - Atsuko Furuta
- Department of Medical Education, Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuhito Asano
- Faculty of Health Sciences, University of Human Arts and Sciences, Saitama-shi, Saitama 339-8555, Japan
| |
Collapse
|
6
|
Molecular docking, network pharmacology and experimental verification to explore the mechanism of Wulongzhiyangwan in the treatment of pruritus. Sci Rep 2023; 13:361. [PMID: 36611103 PMCID: PMC9825397 DOI: 10.1038/s41598-023-27593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Wulongzhiyangwan (WLZYW) is a Chinese prescription medicine for the treatment of pruritus, but its mechanism has not been clarified. The purpose of this study was to explore the mechanism of WLZYW in pruritus through network pharmacology analysis and experimental validation. The active components and corresponding targets of WLZYW were obtained from the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database. Pruritus-related targets were obtained from the GeneCards, TTD (Therapeutic Target Database), and DrugBank databases. The key compounds, core targets, main biological processes and signaling pathways related to WLZYW were identified by constructing and analyzing related networks. The binding affinity between WLZYW components and core targets was validated by AutoDock Vina software. In this study, RBL-2H3 cells were used to construct a degranulation model to simulate histamine-dependent pruritus. 10 chemical constituents, 235 targets and 3606 pruritus-related targets of WLZYW were obtained. Subsequently, 26 core targets were identified through analysis, VEGFA and AKT1 were the main candidates. A pathway enrichment analysis showed that overlapping targets were significantly enriched in the PI3K/AKT signaling pathway. A molecular docking analysis revealed tight binding of VEGF to three core compounds, kaempferol, luteolin and quercetin. Experiments showed that WZLYW inhibited mast cell degranulation, regulated VEGFa mRNA and protein expression levels by inhibiting PI3K/AKT and ERK1/2 signaling pathway activation. The mechanism of WZLYW in pruritus may be regulating VEGFa expression. Network pharmacology assays suggested that WLZYW downregulates VEGFa expression by regulating the PI3K/AKT and ERK1/2 signaling pathways in pruritis treatment.
Collapse
|
7
|
Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed Pharmacother 2022; 156:113945. [DOI: 10.1016/j.biopha.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
|
8
|
Quantitative Analysis of Factors Regulating Angiogenesis for Stem Cell Therapy. BIOLOGY 2021; 10:biology10111212. [PMID: 34827205 PMCID: PMC8614798 DOI: 10.3390/biology10111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary The control of angiogenesis is essential in disease treatment or regenerative medicine. We conducted a clinical study of dedifferentiated fat (DFAT) cells, a kind of mesenchymal stem cells, by applying cell transplantation therapy to induce angiogenesis in patients with severe ischemic disease. This study aimed to analyze the effect of molecules that regulate angiogenesis in vitro and clarify their molecular mechanisms for therapeutic purposes. Normal human umbilical venous endothelial cells (HUVECs) were cultured in the presence of vascular endothelial growth factor (VEGF). Recombinant human angiopoietin-1-producing cells, conditioned media, mouse DFAT cells, and antioxidant polyphenols were added to this system at various concentrations. After 11 days, the cultures were immunostained with CD31 (PECAM-1), and microscopic images were subjected to analysis (area, length, joint, and path) by using software to quantitatively analyze blood vessel formation. The expression of angiogenic markers and COX pathway genes were analyzed by RT-PCR. As a result, the dose-dependent angiogenesis-promoting effect of rAng-1-producing cells, conditioned medium, or commercially available recombinant Ang-1 were observed. DFAT cells also promoted angiogenesis, whereas polyphenols inhibited angiogenesis in a dose-dependent manner. Abstract (1) Background: The control of angiogenesis is essential in disease treatment. We investigated angiogenesis-promoting or -suppressing factors and their molecular mechanisms. (2) Methods: Angiogenesis from HUVECs was quantitatively analyzed using the Angiogenesis Analysis Kit (Kurabo, Osaka, Japan). Human rAng-1-producing 107-35 CHO cells or mouse DFAT-D1 cells were co-cultured with HUVEC. Antioxidant polyphenols were added to the culture. Gene expression was analyzed by RT-PCR. (3) Results: The addition of rAng-1-producing cells, their culture supernatant, or commercially available rAng-1 showed a promoting effect on angiogenesis. The co-culture of DFAT-D1 cells promoted angiogenesis. Polyphenols showed a dose-dependent inhibitory effect on angiogenesis. Luteolin and quercetin showed remarkable anti-angiogenic effects. The expression of vWF, Flk1, and PECAM-1 was increased by adding rAng-1-producing cell culture supernatant. Polyphenols suppressed these genes. Apigenin and luteolin markedly suppressed α-SMA and Flk1. Resveratrol and quercetin enhanced the expression of PPARγ, and luteolin suppressed the expression of COX-1. The expression of endothelial nitric oxide synthase (eNOS), an oxidative stress-related gene, was slightly increased by luteolin. These results suggest that polyphenols induce ROS reduction. (4) Conclusions: We showed the promoting effect of Ang-1 or DFAT and the suppressing effect of polyphenols on angiogenesis and studied their molecular mechanisms. These results help control angiogenesis in regenerative therapy.
Collapse
|