1
|
Wang ZJ, Yang XL, Sun Y, Song HL. Selection and optimization of biofilm carriers as high-effective microbial separator in microbial fuel cells. BIORESOURCE TECHNOLOGY 2025; 418:131941. [PMID: 39638004 DOI: 10.1016/j.biortech.2024.131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Four biofilm carriers including pyrite, manganese ore, ceramsite, and polyurethane sponge were used to construct microbial separators (MSs), while their performance in dual-chamber microbial fuel cells (MFCs) was evaluated. Polyurethane sponge and pyrite were superior biofilm carriers for MSs. The dense biofilm on the polyurethane sponge provides MS with optimal barrier capacity against dissolved oxygen and chemical oxygen demand. Pyrite's unique redox activity enhances proton transfer in MS and reduces ohmic resistance in MFC. The optimal thicknesses of polyurethane sponge MS and pyrite MS were 1.20 and 1.80 cm, and the maximum power densities of MFCs equipped with these two MSs were 14.62 and 11.21 W/m3. Using MSs as separators can significantly lower MFC manufacturing costs, particularly with polyurethane sponge MS at 3.52 $/m2. Additionally, MSs demonstrated good regenerability. These results indicated that MSs based on pyrite and polyurethane sponge have the potential to be high-effective separators for MFC scale-up.
Collapse
Affiliation(s)
- Zi-Jie Wang
- School of Civil Engineering, Southeast University, Dongnan Daxue Road 2, Jiangning District, Nanjing 211189, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Dongnan Daxue Road 2, Jiangning District, Nanjing 211189, China.
| | - Yun Sun
- School of Civil Engineering, Southeast University, Dongnan Daxue Road 2, Jiangning District, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China.
| |
Collapse
|
2
|
Radeef AY, Najim AA, Karaghool HA, Jabbar ZH. Sustainable kitchen wastewater treatment with electricity generation using upflow biofilter-microbial fuel cell system. Biodegradation 2024; 35:893-906. [PMID: 38909143 DOI: 10.1007/s10532-024-10087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The microbial fuel cell (MFC) is considered a modern technology used for treating wastewater and recovering electrical energy. In this study, a new dual technology combining MFC and a specialized biofilter was used. The anodic materials in the system were crushed graphite, either without coating (UFB-MFC) or coated with nanomaterials (nano-UFB-MFC). This biofilter served as a barrier to retain and remove turbidity and suspended solids, while also facilitating the role of bacteria in the removal of organic pollutants, phosphates, nitrates, sulfates, oil and greases. The results demonstrated that both systems exhibited high efficiency in treating kitchen wastewater, specifically greywater and dishwashing wastewater with high detergent concentrations. The removal efficiencies of COD, oil and grease, suspended solids, turbidity, nitrates, sulfates, and phosphates in first UFB-MFC were found to be 88, 95, 89, 86, 87, 75, and 94%, respectively, and in Nano-UFB-MFC were 86, 99, 95, 91, 81, 88, and 95%, respectively, with a high efficiency in recovering bioenergy reaching a value of 1.8 and 1.5 A m-3, respectively. The results of this study demonstrate the potential for developing MFC and utilizing it as a domestic system to mitigate pollution risks before discharging wastewater into the sewer network.
Collapse
Affiliation(s)
- Ahmed Y Radeef
- Department of Environmental Engineering, University of Tikrit, Salah al-Din, Iraq.
| | | | - Haneen A Karaghool
- Department of Environmental Engineering, University of Tikrit, Salah al-Din, Iraq
| | - Zaid H Jabbar
- Building and Construction Technique Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| |
Collapse
|
3
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
4
|
Palanisamy G, Muhammed AP, Thangarasu S, Oh TH. Investigating the Sulfonated Chitosan/Polyvinylidene Fluoride-Based Proton Exchange Membrane with fSiO 2 as Filler in Microbial Fuel Cells. MEMBRANES 2023; 13:758. [PMID: 37755180 PMCID: PMC10536340 DOI: 10.3390/membranes13090758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Chitosan (CS), a promising potential biopolymer with exquisite biocompatibility, economic viability, hydrophilicity, and chemical modifications, has drawn interest as an alternative material for proton exchange membrane (PEM) fabrication. However, CS in its original form exhibited low proton conductivity and mechanical stability, restricting its usage in PEM development. In this work, chitosan was functionalized (sulfonic acid (-SO3H) groups)) to enhance proton conductivity. The sulfonated chitosan (sCS) was blended with polyvinylidene fluoride (PVDF) polymer, along with the incorporation of functionalized SiO2 (-OH groups), for fabricating chitosan-based composite proton exchange membranes to enhance microbial fuel cell (MFC) performances. The results show that adding functionalized inorganic fillers (fSiO2) into the membrane enhances the mechanical, thermal, and anti-biofouling behavior. From the results, the PVDF/sCS/fSiO2 composite membrane exhibited enhanced proton conductivity 1.0644 × 10-2 S cm-1 at room temperature and increased IEC and mechanical and chemical stability. Furthermore, this study presents a revolutionary way to generate environmentally friendly natural polymer-based membrane materials for developing PEM candidates for enhanced MFC performances in generating bioelectricity and wastewater treatment.
Collapse
Affiliation(s)
| | | | | | - Tae Hwan Oh
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 8541, Republic of Korea; (A.P.M.); (S.T.)
| |
Collapse
|
5
|
Hernández SI, Altava B, Portillo-Rodríguez JA, Santamaría-Holek I, García-Alcántara C, Luis SV, Compañ V. The Debye length and anionic transport properties of composite membranes based on supported ionic liquid-like phases (SILLPS). Phys Chem Chem Phys 2022; 24:29731-29746. [PMID: 36458515 DOI: 10.1039/d2cp01519f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An analysis of the ionic transport properties of BMIM [NTf2] in supported ionic-liquid-like phase (SILLP)-based membranes has been carried out based on experimental impedance spectroscopy measurements. The direct current (dc)-conductivity was analyzed to determine the temperature and frequency dependence. The fit of the loss tangent curve data with the Cole-Cole approximation of the electrode polarization model provides the conductivity, diffusivity, and density of charge carriers. Among these quantities, a significant increase in conductivity is observed when an ionic liquid is added to the polymeric matrix containing imidazolium fragments. The use of a recent generalization of Eyring's absolute rate theory allowed the elucidation of how the local entropy restrictions, due to the porosity of the polymeric matrix, control the conductive process. The fit of the conductivity data as a function of temperature manifests the behavior of the excess entropy with respect to the temperature. The activation entropy and enthalpy were also determined. Our results correlate the Debye length (LD) with the experimental values of conductivity, electrode polarization relaxation time, and sample relaxation time involved. Our work provides novel insights into the description of ionic transport in membranes as the diffusivity, mobility, and free charge density depend on the LD. Moreover, we discuss the behavior of the polarization relaxation time, the sample relaxation time, and the static permittivity as a function of the temperature.
Collapse
Affiliation(s)
- S I Hernández
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, CP 76230, Mexico.
| | - Belen Altava
- Departamento de Química Orgánica, Universitat Jaume I, 12080-Castellón de la Plana, Spain.
| | - J A Portillo-Rodríguez
- Facultad de Ingeniería, Universidad Autónoma de Quéretaro, Cerro de las Campanas s/n, Centro Universitario, C.P. 760009, Querétaro, Mexico.
| | - Iván Santamaría-Holek
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, CP 76230, Mexico.
| | - C García-Alcántara
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, CP 76230, Mexico.
| | - Santiago V Luis
- Departamento de Química Orgánica, Universitat Jaume I, 12080-Castellón de la Plana, Spain.
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada, Universitat Politécnica de Valencia, C/Camino de Vera s/n, 46022-Valencia, Spain.
| |
Collapse
|
6
|
Yang Q, Lai M, Liu D, Zhang J, Zhang Y, Liu C, Xu X, Jia J. Biosensor nanostructures based on dual-chamber microbial fuel cells for rapid determination of biochemical oxygen demand and microbial community analysis. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Vidhyeswari D, Surendhar A, Bhuvaneshwari S. General aspects and novel PEMss in microbial fuel cell technology: A review. CHEMOSPHERE 2022; 309:136454. [PMID: 36167209 DOI: 10.1016/j.chemosphere.2022.136454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The current scenario of energy production is mostly shifted towards sustainable renewable energy sources. Other than the energy production from natural resources such as sun, wind and water, microbial fuel cell system (MFC) has earned attraction in recent times. These microbial fuel cell systems are bioelectrochemical cell that possesses a unique ability to generate power as well as treats wastewater simultaneously. In this paper, an overview of the microbial fuel cell system and the effect of significant components on the performance of microbial fuel cell systems are reviewed. Firstly, the importance of the MFC system in power generation, its components, the working principle and various configurations of the MFC were briefly introduced. Biofilm plays a major role in the MFC system. Thus the importance of bio film, bio film formation and characterization techniques are summarised. Further, the review mainly addresses the mechanism of conventional and novel membrane materials on the performance of the MFC system. In addition, special emphasis on ceramic-based materials in the MFC system is presented. Finally, recent applications of the MFC systems are discussed.
Collapse
Affiliation(s)
- D Vidhyeswari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| | - A Surendhar
- Department of Food Technology, TKM Institute of Technology, Kollam, India.
| | - S Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| |
Collapse
|
8
|
|
9
|
Ramirez-Nava J, Martínez-Castrejón M, García-Mesino RL, López-Díaz JA, Talavera-Mendoza O, Sarmiento-Villagrana A, Rojano F, Hernández-Flores G. The Implications of Membranes Used as Separators in Microbial Fuel Cells. MEMBRANES 2021; 11:738. [PMID: 34677504 PMCID: PMC8539572 DOI: 10.3390/membranes11100738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Microbial fuel cells (MFCs) are electrochemical devices focused on bioenergy generation and organic matter removal carried out by microorganisms under anoxic environments. In these types of systems, the anodic oxidation reaction is catalyzed by anaerobic microorganisms, while the cathodic reduction reaction can be carried out biotically or abiotically. Membranes as separators in MFCs are the primary requirements for optimal electrochemical and microbiological performance. MFC configuration and operation are similar to those of proton-exchange membrane fuel cells (PEMFCs)-both having at least one anode and one cathode split by a membrane or separator. The Nafion® 117 (NF-117) membrane, made from perfluorosulfonic acid, is a membrane used as a separator in PEMFCs. By analogy of the operation between electrochemical systems and MFCs, NF-117 membranes have been widely used as separators in MFCs. The main disadvantage of this type of membrane is its high cost; membranes in MFCs can represent up to 60% of the MFC's total cost. This is one of the challenges in scaling up MFCs: finding alternative membranes or separators with low cost and good electrochemical characteristics. The aim of this work is to critically review state-of-the-art membranes and separators used in MFCs. The scope of this review includes: (i) membrane functions in MFCs, (ii) most-used membranes, (iii) membrane cost and efficiency, and (iv) membrane-less MFCs. Currently, there are at least 20 different membranes or separators proposed and evaluated for MFCs, from basic salt bridges to advanced synthetic polymer-based membranes, including ceramic and unconventional separator materials. Studies focusing on either low cost or the use of natural polymers for proton-exchange membranes (PEM) are still scarce. Alternatively, in some works, MFCs have been operated without membranes; however, significant decrements in Coulombic efficiency were found. As the type of membrane affects the performance and total cost of MFCs, it is recommended that research efforts are increased in order to develop new, more economic membranes that exhibit favorable properties and allow for satisfactory cell performance at the same time. The current state of the art of membranes for MFCs addressed in this review will undoubtedly serve as a key insight for future research related to this topic.
Collapse
Affiliation(s)
- Jonathan Ramirez-Nava
- Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía Tropical No 20, Fracc. Las Playas, Acapulco 39390, Mexico; (J.R.-N.); (R.L.G.-M.); (J.A.L.-D.)
| | - Mariana Martínez-Castrejón
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Privada de Laurel No. 13, Col. El Roble, Acapulco 39640, Mexico;
| | - Rocío Lley García-Mesino
- Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía Tropical No 20, Fracc. Las Playas, Acapulco 39390, Mexico; (J.R.-N.); (R.L.G.-M.); (J.A.L.-D.)
| | - Jazmin Alaide López-Díaz
- Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía Tropical No 20, Fracc. Las Playas, Acapulco 39390, Mexico; (J.R.-N.); (R.L.G.-M.); (J.A.L.-D.)
| | - Oscar Talavera-Mendoza
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco el Viejo 40323, Mexico;
| | - Alicia Sarmiento-Villagrana
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Periférico Poniente s/n, Frente a la Colonia Villa de Guadalupe, Iguala de la Independencia 40040, Mexico;
| | - Fernando Rojano
- Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA;
| | - Giovanni Hernández-Flores
- CONACYT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco el Viejo 40323, Mexico
| |
Collapse
|
10
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Das L, Rubbi F, Habib K, Aslfattahi N, Saidur R, Baran Saha B, Algarni S, Irshad K, Alqahtani T. State-of-the-art ionic liquid & ionanofluids incorporated with advanced nanomaterials for solar energy applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Koók L, Lajtai-Szabó P, Bakonyi P, Bélafi-Bakó K, Nemestóthy N. Investigating the Proton and Ion Transfer Properties of Supported Ionic Liquid Membranes Prepared for Bioelectrochemical Applications Using Hydrophobic Imidazolium-Type Ionic Liquids. MEMBRANES 2021; 11:membranes11050359. [PMID: 34068877 PMCID: PMC8156054 DOI: 10.3390/membranes11050359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]− and [NTf2]− anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]− containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]− anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.
Collapse
|
13
|
Zheng D, Hua D, Hong Y, Ibrahim AR, Yao A, Pan J, Zhan G. Functions of Ionic Liquids in Preparing Membranes for Liquid Separations: A Review. MEMBRANES 2020; 10:E395. [PMID: 33291472 PMCID: PMC7762167 DOI: 10.3390/membranes10120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
Membranes are widely used for liquid separations such as removing solute components from solvents or liquid/liquid separations. Due to negligible vapor pressure, adjustable physical properties, and thermal stability, the application of ionic liquids (ILs) has been extended to fabricating a myriad of membranes for liquid separations. A comprehensive overview of the recent developments in ILs in fabricating membranes for liquid separations is highlighted in this review article. Four major functions of ILs are discussed in detail, including their usage as (i) raw membrane materials, (ii) physical additives, (iii) chemical modifiers, and (iv) solvents. Meanwhile, the applications of IL assisted membranes are discussed, highlighting the issues, challenges, and future perspectives of these IL assisted membranes in liquid separations.
Collapse
Affiliation(s)
- Dayuan Zheng
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Dan Hua
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Yiping Hong
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Abdul-Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Tamale Technical University, Education Ridge Avenue, Sagnarigu District, Tamale, Ghana;
| | - Ayan Yao
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Junyang Pan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Guowu Zhan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| |
Collapse
|
14
|
Tailored glycosylated anode surfaces: Addressing the exoelectrogen bacterial community via functional layers for microbial fuel cell applications. Bioelectrochemistry 2020; 136:107621. [DOI: 10.1016/j.bioelechem.2020.107621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
|
15
|
Kugarajah V, Sugumar M, Dharmalingam S. Nanocomposite membrane and microbial community analysis for improved performance in microbial fuel cell. Enzyme Microb Technol 2020; 140:109606. [DOI: 10.1016/j.enzmictec.2020.109606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/12/2023]
|