1
|
Samavati Z, Goh PS, Fauzi Ismail A, Lau WJ, Samavati A, Ng BC, Sohaimi Abdullah M. Advancements in membrane technology for efficient POME treatment: A comprehensive review and future perspectives. J Environ Sci (China) 2025; 155:730-761. [PMID: 40246505 DOI: 10.1016/j.jes.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 04/19/2025]
Abstract
The treatment of POME related contamination is complicated due to its high organic contents and complex composition. Membrane technology is a prominent method for removing POME contaminants on account of its efficiency in removing suspended particles, organic substances, and contaminants from wastewater, leading to the production of high-quality treated effluent. It is crucial to achieve efficient POME treatment with minimum fouling through membrane advancement to ensure the sustainability for large-scale applications. This article comprehensively analyses the latest advancements in membrane technology for the treatment of POME. A wide range of membrane types including forward osmosis, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane bioreactor, photocatalytic membrane reactor, and their combinations is discussed in terms of the innovative design, treatment efficiencies and antifouling properties. The strategies for antifouling membranes such as self-healing and self-cleaning membranes are discussed. In addition to discussing the obstacles that impede the broad implementation of novel membrane technologies in POME treatment, the article concludes by delineating potential avenues for future research and policy considerations. The understanding and insights are expected to enhance the application of membrane-based methods in order to treat POME more efficiently; this will be instrumental in the reduction of environmental pollution.
Collapse
Affiliation(s)
- Zahra Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| |
Collapse
|
2
|
Zeng Y, Zhao C, Ma D, Bin L, Chen W, Li P, Tang B. Recognizing the state of aerobic granular sludge over its life-cycle in a continuous-flow membrane bioreactor with an artificial intelligence approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125527. [PMID: 40315654 DOI: 10.1016/j.jenvman.2025.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
The continuous-flow aerobic granular sludge-membrane bioreactor (AGS-MBR) system represents an efficient and sustainable technology for wastewater treatment. AGS, a spherical or ellipsoidal granular sludge formed through microbial self-aggregation under aerobic conditions, progresses through four distinct life-cycle stages in the AGS-MBR system: initial, growth, mature, and cleaved. Accurate identification and classification of these stages are crucial for optimizing AGS-MBR operations and maintaining system stability; however, traditional monitoring methods are labor-intensive and error-prone. This study utilized Artificial Intelligence (AI) to develop a machine learning model based on the You Only Look Once (YOLOv8) algorithm for automated AGS monitoring and classification. Trained on 862 annotated images, the model achieved average precision of 0.985 at an Intersection over Union (IoU) threshold of 0.5 (mAP50), and the mAP50-95 of 0.837, demonstrating high accuracy in AGS classification. The t-distributed Stochastic Neighbor Embedding (t-SNE) revealed distinct clusters of AGS features across life-cycle stages, while SHapley Additive exPlanations (SHAP) demonstrated that the model focused on global features of small-grained images and edge features of large-grained images, both confirming the robustness of classification. The model's statistical functionality, supported by global variables, enabled real-time AGS monitoring in MBR system. This study provides a powerful tool for detecting and classifying the AGS life-cycle, offering guidance for the operation and maintenance of AGS-MBR system and demonstrating the potential applications of AI in wastewater treatment.
Collapse
Affiliation(s)
- Yu Zeng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chenguang Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Danling Ma
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Liang W, Yang B, Bin L, Hu Y, Fan D, Chen W, Li P, Tang B. Intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge-membrane bioreactor by Acinetobacter junii. BIORESOURCE TECHNOLOGY 2024; 397:130474. [PMID: 38395234 DOI: 10.1016/j.biortech.2024.130474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
This work aims at intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge (AGS) - membrane bioreactor (MBR) by Acinetobacter junii. After acclimation and enrichment in a sequencing batch reactor (SBR), Acinetobacter junii, a kind of denitrifying phosphate accumulating organism (DPAO), was successfully screened in the used SBR. Then it was verified to be capable of effectively enhancing the performance in the simultaneous removal of nitrogen and phosphorus of AGS-MBR. In the system, DPAO (Acinetobacter junii) mainly occurred in AGS, and the highest ratio even reached 22.8%, but its competitive advantages highly depend on the size of AGS. The presented results can cultivate AGS and enrich DPAO simultaneously to improve the removal of nitrogen and phosphorus of an AGS-MBR, which provide an environmentally friendly approach to upgrade traditional wastewater treatment processes.
Collapse
Affiliation(s)
- Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd., Foshan, 528000, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd., Foshan, 528000, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Yang B, Liang W, Bin L, Chen W, Chen X, Li P, Wen S, Huang S, Tang B. Insights into the life-cycle of aerobic granular sludge in a continuous flow membrane bioreactor by tracing its heterogeneous properties at different stages. WATER RESEARCH 2023; 243:120419. [PMID: 37536250 DOI: 10.1016/j.watres.2023.120419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
This work gave insights into the life-cycle of aerobic granular sludge (AGS) by tracing its heterogeneity in the basic properties at different stages in a closed system (a continuous flow membrane bioreactor, MBR), including physical and chemical characteristics and microbial communities. The results indicate that the entire life-cycle consists of the following four stages, namely, the initial, growing, mature and cleaved stages, where multiple AGS properties synergistically affect the rheological properties of the AGS over its life-cycle. The storage modulus (G') of AGS reached its maximum value at the mature stage, whose value was significantly and positively correlated with the protein (PN) in extracellular polymeric substances (EPS) and granule size, specifically the peak area of granule size distribution, but this value was strongly and negatively correlated with the roughness. The AGS at the mature stage would be more vulnerable to be destroyed than that at other stages under the condition of higher shear strain, such as γ = 50%, which was associated with larger granule size and fewer polysaccharide (PS)-related functional groups (especially in the soluble microbial products (SMPs) in the outermost layer of AGS), and the decrease in PS was correlated with a higher relative abundance of Chloroflexi. Additionally, the value of shear strain that AGS was subjected to had a good linear correlation (R2=0.993) with the Young's modulus, which indicated the ability of AGS to resist deformation improved with increasing values of shear strain.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xinyi Chen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shanglong Wen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Tsertou E, Caluwé M, Goossens K, Seguel Suazo K, Dries J. Performance of an aerobic granular sludge membrane filtration in a full-scale industrial plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3002-3016. [PMID: 37387426 PMCID: wst_2023_176 DOI: 10.2166/wst.2023.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
This study quantifies the hydraulic performance of a pilot-scale ultrafiltration system integrated into a full-scale industrial aerobic granular sludge (AGS) plant. The treatment plant consisted of parallel AGS reactors, Bio1 and Bio2, with similar initial granular sludge properties. During the 3-month filtration test, a chemical oxygen demand (COD) overloading episode took place, affecting the settling properties, morphology, and microbial community composition in both reactors. The impact on Bio2 was more severe than on Bio1, with higher maximal sludge volume index values, a complete loss of granulation, and the excessive appearance of filamentous bacteria extending from the flocs. The membrane filtration properties of both sludges, with these different sludge qualities, were compared. The permeability in Bio1 varied between 190.8 ± 23.3 and 158.9 ± 19.2 L·m-2·h-1·bar-1, which was 50% higher than in Bio2 (89.9 ± 5.8 L·m-2·h-1·bar-1). A lab-scale filtration experiment using a flux-step protocol showed a lower fouling rate for Bio1 in comparison with Bio2. The membrane resistance due to pore blocking was three times higher in Bio2 than in Bio1. This study shows the positive impact of granular biomass on the long-term membrane filtration properties and stresses the importance of granular sludge stability during reactor operation.
Collapse
Affiliation(s)
- Eirini Tsertou
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171, Antwerp 2020, Belgium E-mail:
| | - Michel Caluwé
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171, Antwerp 2020, Belgium
| | - Koen Goossens
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171, Antwerp 2020, Belgium
| | - Karina Seguel Suazo
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171, Antwerp 2020, Belgium
| | - Jan Dries
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171, Antwerp 2020, Belgium
| |
Collapse
|
6
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
7
|
Tirkey A, Pandey M, Tiwari A, Sahu RL, Kukkar D, Dubey R, Kim KH, Pandey SK. Global distribution of microplastic contaminants in aquatic environments and their remediation strategies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10819. [PMID: 36539344 DOI: 10.1002/wer.10819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This review describes the occurrence and distribution of microplastics in freshwater and marine environments in recent years (2017-2022). Use of microplastics often results in contamination of aquatic environments, threatens biodiversity, and creates the need for environmental remediation. Such remediation strategies can involve primary, secondary, and tertiary treatments. Tertiary treatment is a frequent research subject due to its high efficiency and the possibility for advancements and enhancements. This study discusses tertiary treatments with remediation efficiencies of 95% and greater and their advantages, disadvantages, and future perspectives. Biochar-mediated remediation of microplastics is an effective method that may be able to achieve efficiencies approaching 100%. The study concludes by exploring methods of removing microplastics, including constructed wetlands and biochar, which offer high efficiency. PRACTITIONER POINTS: Tertiary treatments are an effective microplastic remediation strategy applicable succeeding secondary or primary treatments or as an individual remediation strategy. Biochar is a highly efficient adsorbent for microplastic remediation from aquatic environment with eco-friendly aspect and reusability. Modifications in tertiary treatments and enhancement in remediation efficiency are still a subject of research for future studies.
Collapse
Affiliation(s)
- Astha Tirkey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Mohineeta Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Ankesh Tiwari
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Roshan Lal Sahu
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Rashmi Dubey
- Department of Chemistry, L.B.S. College, Baloda (Janjgir-Champa), Baloda, Chhattisgarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
8
|
Dynamic scouring of multifunctional granular material enhances filtration performance in membrane bioreactor: Mechanism and modeling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies. ENERGIES 2021. [DOI: 10.3390/en14164895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anaerobic Digestion (AD) is a well-established process that is becoming increasingly popular, especially as a technology for organic waste treatment; the process produces biogas, which can be upgraded to biomethane, which can be used in the transport sector or injected into the natural gas grid. Considering the sensitivity of Anaerobic Digestion to several process parameters, mathematical modeling and numerical simulations can be useful to improve both design and control of the process. Therefore, several different modeling approaches were presented in the literature, aiming at providing suitable tools for the design and simulation of these systems. The purpose of this study is to analyze the recent advancements in the biomethane production from different points of view. Special attention is paid to the integration of this technology with additional renewable energy sources, such as solar, geothermal and wind, aimed at achieving a fully renewable biomethane production. In this case, auxiliary heat may be provided by solar thermal or geothermal energy, while wind or photovoltaic plants can provide auxiliary electricity. Recent advancements in plants design, biomethane production and mathematical modeling are shown in the paper, and the main challenges that these fields must face with are discussed. Considering the increasing interest of industries, public policy makers and researchers in this field, the efficiency and profitability such hybrid renewable solutions for biomethane production are expected to significantly improve in the next future, provided that suitable subsidies and funding policies are implemented to support their development.
Collapse
|
10
|
New Advances in Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering and Microbiological Aspects. WATER 2021. [DOI: 10.3390/w13131792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimensional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundamentally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange. Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
Collapse
|