1
|
Wang J, Yuan Y, Liu Y, Li X, Wu S. Application of chitosan in fruit preservation: A review. Food Chem X 2024; 23:101589. [PMID: 39036472 PMCID: PMC11260026 DOI: 10.1016/j.fochx.2024.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Fruit preservation after harvest is one of the key issues in current agriculture, rural areas, and for farmers. Using chitosan to keep fruits fresh, which can reduce the harm caused by chemical preservative residue to human health. It also helps avoid the disadvantages of the high cost of physical preservation and the challenges associated with difficult operation. This review focuses on the application progress of chitosan in fruit preservation. Studies have shown that chitosan inhibits the growth of bacteria and fungi, and delays fruit aging and decay. Furthermore, it can regulate the respiration and physiological metabolism of fruit, helping to maintain its quality and nutritional value. The preservation mechanism of chitosan includes its antibacterial properties, film-forming properties, and its effects on the physiological processes of fruit. However, in practical applications, issues such as determining the optimal concentration and treatment of chitosan still require further research and optimization.
Collapse
Affiliation(s)
- Jingjing Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Yuning Yuan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Yu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Haizhou 222005, China
| | - Xiang Li
- Corresponding authors at: Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China.
| | - Shengjun Wu
- Corresponding authors at: Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Haizhou 222005, China.
| |
Collapse
|
2
|
Xiao Q, Wang Y, Fan J, Yi Z, Hong H, Xie X, Huang QA, Fu J, Ouyang J, Zhao X, Wang Z, Zhu Z. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images. Biosens Bioelectron 2024; 244:115807. [PMID: 37948914 DOI: 10.1016/j.bios.2023.115807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
With the rapid development of microfluidic platforms in high-throughput single-cell culturing, laborious operation to manipulate massive budding yeast cells (Saccharomyces cerevisiae) in replicative aging studies has been greatly simplified and automated. As a result, large datasets of microscopy images bring challenges to fast and accurately determine yeast replicative lifespan (RLS), which is the most important parameter to study cell aging. Based on our microfluidic diploid yeast long-term culturing (DYLC) chip that features 1100 traps to immobilize single cells and record their proliferation and aging via time-lapse imaging, herein, a dedicated algorithm combined with computer vision and residual neural network (ResNet) was presented to efficiently process tremendous micrographs in a high-throughput and automated manner. The image-processing algorithm includes following pivotal steps: (i) segmenting multi-trap micrographs into time-lapse single-trap sub-images, (ii) labeling 8 yeast budding features and training the 18-layer ResNet, (iii) converting the ResNet predictions in analog values into digital signals, (iv) recognizing cell dynamic events, and (v) determining yeast RLS and budding time interval (BTI) ultimately. The ResNet algorithm achieved high F1 scores (over 92%) demonstrating the effectiveness and accuracy in the recognition of yeast budding events, such as bud appearance, daughter dissection and cell death. Therefore, the results conduct that similar deep learning algorithms could be tailored to analyze high-throughput microscopy images and extract multiple cell behaviors in microfluidic single-cell analysis.
Collapse
Affiliation(s)
- Qin Xiao
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Yingying Wang
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Juncheng Fan
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Zhenxiang Yi
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Hua Hong
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Xiao Xie
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Qing-An Huang
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Jiaming Fu
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Jia Ouyang
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Xiangwei Zhao
- Southeast University, School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Sipailou 2, Nanjing, 210096, China
| | - Zixin Wang
- Sun Yat-Sen University, School of Electronics and Information Technology, Waihuan Dong Road 132, Guangzhou, 510006, China.
| | - Zhen Zhu
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China.
| |
Collapse
|
3
|
Wu Q, Niu M, Zhou C, Wang Y, Xu J, Shi L, Xiong H, Feng N. Formation and detection of biocoronas in the food industry and their fate in the human body. Food Res Int 2023; 174:113566. [PMID: 37986519 DOI: 10.1016/j.foodres.2023.113566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The rapid advancement of nanotechnology has opened up new avenues for applications in all stages of the food industry. Over the past decade, extensive research has emphasized that when nanoparticles (NPs) enter organisms, they spontaneously adsorbed biomolecules, leading to the formation of biocorona. This paper provided a detailed review of the process of biocorona formation in the food industry, including their classification and influencing factors. Additionally, various characterization methods to investigated the morphology and structure of biocoronas were introduced. As a real state of food industry nanoparticles in biological environments, the biocorona causes structural transformations of biomolecules bound to NPs, thus affecting their fate in the body. It can either promote or inhibit enzyme activity in the human environment, and may also positively or negatively affect the cellular uptake and toxicity of NPs. Since NPs present in the food industry will inevitably enter the human body, further investigations on biocoronas will offer valuable insights and perspectives on the safety of incorporating more NPs into the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chen Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yaxiong Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - He Xiong
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
4
|
Modau L, Sigwadi R, Mokrani T, Nemavhola F. Chitosan Membranes for Direct Methanol Fuel Cell Applications. MEMBRANES 2023; 13:838. [PMID: 37888010 PMCID: PMC10608347 DOI: 10.3390/membranes13100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The purpose of this study is to identify the steps involved in fabricating silica/chitosan composite membranes and their suitability for fuel cell applications. It also intends to identify the physical characteristics of chitosan composite membranes, including their degree of water absorption, proton conductivity, methanol permeability, and functional groups. In this investigation, composite membranes were fabricated using the solution casting method with a chitosan content of 5 g and silica dosage variations of 2% and 4% while stirring at a constant speed for 2 h. According to the findings, the analysis of composite membranes produced chitosan membranes that were successfully modified with silica. The optimum membrane was found to be 4% s-SiO2 from the Sol-gel method with the composite membrane's optimal condition of 0.234 cm/s proton conductivity, water uptake of 56.21%, and reduced methanol permeability of 0.99 × 10-7 cm2/s in the first 30 min and 3.31 × 10-7 in the last 150 min. Maintaining lower water uptake capacity at higher silica content is still a challenge that needs to be addressed. In conclusion, the fabricated membranes showed exceptional results in terms of proton conductivity and methanol permeability.
Collapse
Affiliation(s)
- Livhuwani Modau
- Department of Chemical Engineering, University of South Africa, Florida 1710, South Africa; (L.M.); (R.S.); (T.M.)
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa, Florida 1710, South Africa; (L.M.); (R.S.); (T.M.)
| | - Touhami Mokrani
- Department of Chemical Engineering, University of South Africa, Florida 1710, South Africa; (L.M.); (R.S.); (T.M.)
| | - Fulufhelo Nemavhola
- Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
5
|
Shan Y, Li T, Qu H, Duan X, Farag MA, Xiao J, Gao H, Jiang Y. Nano‐preservation: An emerging postharvest technology for quality maintenance and shelf life extension of fresh fruit and vegetable. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Giza Egypt
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Vigo Spain
| | - Haiyan Gao
- Key Laboratory of Postharvest Handing of Fruits of Ministry of Agriculture and Rural Affairs, Food Science Institute Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- College of Advanced Agricultural Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
6
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
7
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
8
|
Ahmed HY, Safwat N, Shehata R, Althubaiti EH, Kareem S, Atef A, Qari SH, Aljahani AH, Al-Meshal AS, Youssef M, Sami R. Synthesis of Natural Nano-Hydroxyapatite from Snail Shells and Its Biological Activity: Antimicrobial, Antibiofilm, and Biocompatibility. MEMBRANES 2022; 12:408. [PMID: 35448378 PMCID: PMC9025656 DOI: 10.3390/membranes12040408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Hydroxyapatite nanoparticles (HAn) have been produced as biomaterial from biowaste, especially snail shells (Atactodea glabrata). It is critical to recycle the waste product in a biomedical application to overcome antibiotic resistance as well as biocompatibility with normal tissues. Moreover, EDX, TEM, and FT-IR analyses have been used to characterize snail shells and HAn. The particle size of HAn is about 15.22 nm. Furthermore, higher inhibitory activity was observed from HAn than the reference compounds against all tested organisms. The synthesized HAn has shown the lowest MIC values of about 7.8, 0.97, 3.9, 0.97, and 25 µg/mL for S. aureus, B. subtilis, K. pneumonia, C. albicans, and E. coli, respectively. In addition, the HAn displayed potent antibiofilm against S. aureus and B. subtilis. According to the MTT, snail shell and HAn had a minor influence on the viability of HFS-4 cells. Consequently, it could be concluded that some components of waste, such as snail shells, have economic value and can be recycled as a source of CaO to produce HAn, which is a promising candidate material for biomedical applications.
Collapse
Affiliation(s)
- Hanaa Y Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Nesreen Safwat
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Reda Shehata
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Eman Hillal Althubaiti
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sayed Kareem
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Ahmed Atef
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amani H Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Areej Suliman Al-Meshal
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud Youssef
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11787, Egypt
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Extraction and Characterization of Pectin from Jerusalem ArtiChoke Residue and Its Application in Blueberry Preservation. COATINGS 2022. [DOI: 10.3390/coatings12030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To prolong the storage period of blueberry and improve its shelf-life quality, an edible coating based on chitosan was developed, and different contents of pectin were added to the coating. In this study, Jerusalem artichoke residue was used as a source of pectin, which is a byproduct of the processing of inulin. The extracted pectin has a low cost and high quality, which is very suitable for the preservation of coating. The coating was prepared and the chemical properties of the coating were characterized by SEM, XRD, TG, and FTIR. The barrier properties of the coating were analyzed by thickness, water content, solubility, and water vapor permeability. The results showed that the pectin coating exhibited excellent performance in blueberry preservation. Following 16 days of storage, the decay and weight loss rates of blueberry treated with 0.2% pectin coating decreased by 33 and 22%, respectively. Moreover, the organic acid consumption of the coated blueberry slowed and the anthocyanins were better preserved. As a low-cost, safe, and efficient technology, the pectin chitosan composite coating has significant potential in the berries preservation industry.
Collapse
|
10
|
Active Bionanocomposite Coating Quality Assessments of Some Cucumber Properties with Some Diverse Applications during Storage Condition by Chitosan, Nano Titanium Oxide Crystals, and Sodium Tripolyphosphate. CRYSTALS 2022. [DOI: 10.3390/cryst12020131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cucumbers have a short shelf-life of about 14 days, they are perishable due to the high moisture content. This study aimed to study the effects of nano-coating material such as titanium nanoparticles and chitosan with the addition of sodium tripolyphosphate as a crosslinker to enhance cucumber quality during storage. Some essential physical, chemical, and biological parameters were determined. CH-Nano-ST (chitosan/nano titanium oxide crystals/sodium tripolyphosphate) retained the maximum greenness, −7.99, compared to CH-Nano samples, which recorded −7.31. CH-Nano (chitosan/nano titanium oxide crystals) remained the lightest, 44.38, and CH-Nano-ST was a little darker (43.73) compared to the others treatments. The discoloration was extra severe with control (22.30), which started to spoil after the end of the first week. After 21 days of the storage period at 10 °C, the reducing sugars content reduced to reach −0.64 g/100 g and −0.21 g/100 g for CH-Nano and CH-Nano-ST treatments, respectively. The CH-Nano-ST treatment presented a lower value of toughness, followed by CH-Nano at the end of the storage period. Moreover, the highest crispness index was detected for CH-Nano (5.12%), while CH-Nano-ST treatment had a slight decline to reach 4.92%. The biological results indicated that CH-Nano-ST treatment can be applied to delay the microbial contamination of Salmonella spp. in cucumbers as it reached 0.94 log CFU/g, while the CH-Nano treatment reached 1.09 log CFU/g, at the end of the storage period. In summary, nano-coating treatments with the addition of sodium tripolyphosphate can be applied to regulator postharvest quality measurements of the biological activities in cucumbers during storage at 10 °C until 21 days.
Collapse
|
11
|
Helal M, Sami R, Khojah E, Elhakem A, Benajiba N, Al-Mushhin AAM, Fouda N. Evaluating the coating process of titanium dioxide nanoparticles and sodium tripolyphosphate on cucumbers under chilling condition to extend the shelf-life. Sci Rep 2021; 11:20312. [PMID: 34645839 PMCID: PMC8514431 DOI: 10.1038/s41598-021-99023-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Cucumber is a highly perishable fruit, that can easily suffer from water loss, condensation, shriveling, yellowing and decay. The present investigation aim was to extending the shelf-life of cucumber using eco-friendly sodium tripolyphosphate and nano-material. Decay; hardness; succinate dehydrogenase activity (SDH); condensation and shriveling rates; and visual quality assessments of cucumbers fruits were evaluated during 21 days of storage period at 10 °C. There was a slight incidence of decay among (Chitosan/Titanium Dioxide Nanoparticles) CS-TiO2 and (Chitosan/Titanium Dioxide Nanoparticles/Sodium Tripolyphosphate) CS-TiO2-STP samples, which reported the lowest decay incidence 2.21% in CS-TiO2, while CS-TiO2-STP did not show any decay at end of storage period. CS-TiO2-STP recorded the lowest value in SDH activity 0.08 ∆OD min−1 mg protein−1. Very slight hardness, water condensation, and shriveling were detected in CS-TiO2 samples, while CS-TiO2-STP was the lowest compared with other SC samples and control. In general, CS-TiO2-STP treatment was found most potential to enhance the postharvest shelf life of cucumber throughout the storage period up to 21 day.
Collapse
Affiliation(s)
- Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia.
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Abeer Elhakem
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Amina A M Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - N Fouda
- Production & Mechanical Design Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Kumar N, Pratibha, Trajkovska Petkoska A, Khojah E, Sami R, Al-Mushhin AAM. Chitosan Edible Films Enhanced with Pomegranate Peel Extract: Study on Physical, Biological, Thermal, and Barrier Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3305. [PMID: 34203852 PMCID: PMC8232757 DOI: 10.3390/ma14123305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
In the present study, pomegranate peel extract was used as a reinforcing agent in developing chitosan-based edible film. Different concentrations (0.2 g/mL, 0.4 g/mL, 0.6 g/mL, 0.8 g/mL, and 1.0 g/mL) of pomegranate peel extract were incorporated in chitosan-based edible film. A neat chitosan film was used as a control. This work covers the effect of pomegranate peel extract on the physical, biological, mechanical, thermal, and barrier properties of enriched chitosan-based edible film. The results showed that the thickness (0.142-0.159 mm), tensile strength (32.45-35.23 MPa), moisture (11.23-15.28%), opacity (0.039-0.061%), water (1.32-1.60 g·mm/m2), gas barrier properties (93.81-103.45 meq/kg), phenolic content (5.75-32.41 mg/g), and antioxidant activity (23.13-76.54%) of the films increased with increasing volume fraction of pomegranate peel extract. A higher concentration of incorporated pomegranate peel extracts significantly (p < 0.05) reduced the thermal stability of the film, along with its transparency, solubility, swelling, and color. This work revealed that the incorporation of a higher portion of pomegranate peel extract in chitosan film holds significant (p < 0.05) potential for the increase in biological activities of such films in terms of antioxidant and antimicrobial behavior. The properties of pomegranate peel extract-enriched chitosan films could be an excellent cure for free radicals, whereas they could also inhibit the growth of the foodborne pathogens during the processing and preservation of the food. Further studies are needed for the application of pomegranate peel extract-enriched edible films on food products such as fruits and vegetables in order to extend their storage life and improve the quality and safety of preserved food products.
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Agricultural and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Kundli 131028, India
| | - Pratibha
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Kundli 131028, India;
- Department of Humanities and Social Sciences, National Institute of Technology, Kurukshetra 136119, India
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Kliment Ohridski University-Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia;
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia;
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| |
Collapse
|