1
|
Kang J, Kwon O, Kim JP, Kim JY, Kim J, Cho Y, Kim DW. Graphene Membrane for Water-Related Environmental Application: A Comprehensive Review and Perspectives. ACS ENVIRONMENTAL AU 2025; 5:35-60. [PMID: 39830720 PMCID: PMC11741062 DOI: 10.1021/acsenvironau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 01/22/2025]
Abstract
Graphene-based materials can be potentially utilized for separation membranes due to their unique structural properties such as precise molecular sieving by interlayer spacing or pore structure and excellent stability in harsh environmental conditions. Therefore, graphene-based membranes have been extensively demonstrated for various water treatment applications, including desalination, water extraction, and rare metal ion recovery. While most of the utilization has still been limited to the laboratory scale, emerging studies have dealt with scalable approaches to show commercial feasibility. This review summarizes the recent studies on diverse graphene membrane fabrications and their environmental applications related to water-containing conditions in addition to the molecular separation mechanism and critical factors related to graphene membrane performance. Additionally, we discuss future perspectives and challenges to provide insights into the practical applications of graphene-based membranes on the industrial scale.
Collapse
Affiliation(s)
- Junhyeok Kang
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeong Pil Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yonghwi Cho
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Wang J, Wang A, Liu J, Niu Q, Zhang Y, Liu P, Liu C, Wang H, Zeng X, Zeng G. Polyethyleneimine Modified Two-Dimensional GO/MXene Composite Membranes with Enhanced Mg 2+/Li + Separation Performance for Salt Lake Brine. Molecules 2024; 29:4326. [PMID: 39339322 PMCID: PMC11433666 DOI: 10.3390/molecules29184326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
As global demand for renewable energy and electric vehicles increases, the need for lithium has surged significantly. Extracting lithium from salt lake brine has become a cutting-edge technology in lithium resource production. In this study, two-dimensional (2D) GO/MXene composite membranes were fabricated using pressure-assisted filtration with a polyethyleneimine (PEI) coating, resulting in positively charged PEI-GO/MXene membranes. These innovative membranes, taking advantage of the synergistic effects of interlayer channel sieving and the Donnan effect, demonstrated excellent performance in Mg2+/Li+ separation with a mass ratio of 20 (Mg2+ rejection = 85.3%, Li+ rejection = 16.7%, SLi,Mg = 5.7) in simulated saline lake brine. Testing on actual salt lake brine in Tibet, China, confirmed the composite membrane's potential for effective Mg2+/Li+ separation. In the actual brine test with high concentration, Mg2+/Li+ after membrane separation is 2.2, which indicates that the membrane can significantly reduce the concentration of Mg2+ in the brine. Additionally, the PEI-GO/MXene composite membrane demonstrated strong anti-swelling properties and effective divalent ion rejection. This research presents an innovative approach to advance the development of 2D membranes for the selective removal of Mg2+ and Li+ from salt lake brine.
Collapse
Affiliation(s)
- Jun Wang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Andong Wang
- The 4th Geological Brigade of Sichuan, Chengdu 611130, China
| | - Jiayuan Liu
- The 4th Geological Brigade of Sichuan, Chengdu 611130, China
| | - Qiang Niu
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Yijia Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Ping Liu
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Chengwen Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xiangdong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
- Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
3
|
Moriyama N, Takenaka R, Nagasawa H, Kanezashi M, Tsuru T. Physicochemical Treatments of Graphene Oxide to Improve Water Vapor/Gas Separation Performance of Supported Laminar Membranes: Sonication and H 2O 2 Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8086-8097. [PMID: 38301232 DOI: 10.1021/acsami.3c16844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
We investigated the previously unexplored domain of water vapor/gas separation using graphene oxide (GO) membranes, expecting future applications, including gas dehumidifiers and superior humidity controllers. While the importance of manipulation of GO nanosheet size and surface chemistry in traditional water purification and gas separation has been acknowledged, their potential impact on water vapor/gas separation remained unexplored until now. We applied sonication and hydrogen peroxide treatments to GO water dispersions and systematically evaluated the size and surface chemistry of each GO nanosheet. Both treatments reduced the GO nanosheet size to shorten the diffusion length, which improved water permeance. In addition, hydrogen peroxide treatment improved the hydrophilicity of the nanosheet. Our novel findings demonstrate that optimization of GO nanosheet size and the increase in their hydrophilicity via hydrogen peroxide treatments for 5 h significantly enhance water permeance, leading to a remarkable water vapor permeance of 4.6 × 10-6 mol/(m2 s Pa) at 80 °C, a 3.1-fold improvement over original GO membranes, while maintaining a water vapor/nitrogen permeance ratio exceeding 10,000. These results not only provide important insights into the nature of water vapor/gas separation but also suggest innovative methods for optimizing the GO membrane structure.
Collapse
Affiliation(s)
- Norihiro Moriyama
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Risa Takenaka
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroki Nagasawa
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
4
|
Li J, Chen X, Zhu X, Jiang Y, Chang X, Sun S. Two-dimensional transition metal MXene-based gas sensors: A review. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Iqbal J, Rasool K, Howari F, Nazzal Y, Sarkar T, Shahzad A. A Hydrofluoric Acid-Free Green Synthesis of Magnetic M.Ti 2CT x Nanostructures for the Sequestration of Cesium and Strontium Radionuclide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3253. [PMID: 36145041 PMCID: PMC9502560 DOI: 10.3390/nano12183253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
MAX phases are the parent materials used for the formation of MXenes, and are generally obtained by etching using the highly corrosive acid HF. To develop a more environmentally friendly approach for the synthesis of MXenes, in this work, titanium aluminum carbide MAX phase (Ti2AlC) was fabricated and etched using NaOH. Further, magnetic properties were induced during the etching process in a single-step etching process that led to the formation of a magnetic composite. By carefully controlling etching conditions such as etching agent concentration and time, different structures could be produced (denoted as M.Ti2CTx). Magnetic nanostructures with unique physico-chemical characteristics, including a large number of binding sites, were utilized to adsorb radionuclide Sr2+ and Cs+ cations from different matrices, including deionized, tap, and seawater. The produced adsorbents were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The synthesized materials were found to be very stable in the aqueous phase, compared with corrosive acid-etched MXenes, acquiring a distinctive structure with oxygen-containing functional moieties. Sr2+ and Cs+ removal efficiencies of M.Ti2CTx were assessed via conventional batch adsorption experiments. M.Ti2CTx-AIII showed the highest adsorption performance among other M.Ti2CTx phases, with maximum adsorption capacities of 376.05 and 142.88 mg/g for Sr2+ and Cs+, respectively, which are among the highest adsorption capacities reported for comparable adsorbents such as graphene oxide and MXenes. Moreover, in seawater, the removal efficiencies for Sr2+ and Cs+ were greater than 93% and 31%, respectively. Analysis of the removal mechanism validates the electrostatic interactions between M.Ti2C-AIII and radionuclides.
Collapse
Affiliation(s)
- Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5824, Qatar
| | - Fares Howari
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Tapati Sarkar
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| | - Asif Shahzad
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
6
|
Othman Z, Mahmoud KA. Advancements of 2D Materials-Based Membranes. MEMBRANES 2021; 12:membranes12010052. [PMID: 35054578 PMCID: PMC8780266 DOI: 10.3390/membranes12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
|