1
|
Haranal S, Ranganath VA, Maity I. Urease-coupled systems and materials: design strategies, scope and applications. J Mater Chem B 2025; 13:4252-4278. [PMID: 40066476 DOI: 10.1039/d4tb02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Synthetic systems have co-opted urease, a crucial enzyme serving many biological functions, to recapitulate complex biological features. Therefore, the urease-urea feedback reaction network (FCRN) is reciprocated with soft materials to induce various animate-like features, including self-regulation, error correction, and decision-making capabilities, that are processed through a variety of non-linear functions. Although free-urease-based homogeneous systems are capable of adhering to many non-linear characteristics, they lack the ability to showcase the diffusion-controlled spatiotemporal phenomena. Therefore, it demands urease immobilization, whereby a compartmentalized reaction hub can facilitate the interplay of FCRN with reaction diffusion to regulate the system's operation, allowing various non-linear responses and spatiotemporal self-organization. Indeed, the beneficial framework of urease-based commercial systems in modern technology necessitates the accessibility, reusability, and long-term stability of urease. Consequently, several techniques for urease immobilization merit attention. This review highlights the diverse covalent and non-covalent approaches for urease immobilization on different substrates and illustrates several chemical reactions and non-covalent interactions as tools for creating targeted systems and soft materials to realize many on-demand functions. We also emphasize how the advancement of systems chemistry has propelled research in soft materials to comprehend system-level applications by demonstrating several emerging non-linear functions with potent applications in many directions, including sensing, soft robotics, regulation of material properties and many more.
Collapse
Affiliation(s)
- Shashikumar Haranal
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| | - Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore-562112, Karnataka, India.
| |
Collapse
|
2
|
Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic Peptides: From Mechanism, Design Strategies to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56497-56518. [PMID: 39393043 DOI: 10.1021/acsami.4c08891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Zwitterionic peptides, as a type of peptide composed of charged residues, are electrically neutral, which combine the advantages of zwitterionic materials and biological peptides, exhibiting hydrophilicity and programmable properties. As attractive candidates for resisting nonspecific adsorption of biomacromolecules and microorganisms, zwitterionic peptides have been applied in materials science, biomedicine, and biochemistry over the past decade. In this review, the development of zwitterionic peptides has been systematically outlined and analyzed, including their mechanisms, structure-function relationships, and design strategies. Furthermore, this review emphasizes and discusses their recent applications for developing functional coatings, biosensors, drug delivery systems, and engineering proteins. Finally, future research perspectives and challenges of zwitterionic peptides are also prospected and discussed. This review is intended to provide clarity and insight into the design and applications of zwitterionic peptides.
Collapse
Affiliation(s)
- Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Alanazi AZ, Alhazzani K, Mostafa AM, Barker J, Ibrahim H, El-Wekil MM, Ali AMBH. A novel urease-assisted ratiometric fluorescence sensing platform based on pH-modulated copper-quenched near-infrared carbon dots and methyl red-quenched red carbon dots for selective urea monitoring. Mikrochim Acta 2024; 191:505. [PMID: 39097544 DOI: 10.1007/s00604-024-06573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024]
Abstract
A novel and sensitive fluorescence ratiometric method is developed for urea detection based on the pH-sensitive response of two fluorescent carbon dot (CD) systems: R-CDs/methyl red (MR) and NIR-CDs/Cu2+. The sensing mechanism involves breaking down urea using the enzyme urease, releasing ammonia and increasing pH. At higher pH, the fluorescence of NIR-CDs is quenched due to the enhanced interaction with Cu2+, while the fluorescence of R-CDs is restored as the acidic MR converts to its basic form, removing the inner filter effect. The ratiometric signal (F608/F750) of the R-CDs/MR and NIR-CDs/Cu2+ intensities changed in response to the pH induced by urea hydrolysis, enabling selective and sensitive urea detection. Detailed spectroscopic and morphological investigations confirmed the fluorescence probe design and elucidated the sensing mechanism. The method exhibited excellent sensitivity (0.00028 mM LOD) and linearity range (0.001 - 8.0 mM) for urea detection, with successful application in milk samples for monitoring adulteration, demonstrating negligible interference and high recovery levels (96.5% to 101.0%). This ratiometric fluorescence approach offers a robust strategy for selective urea sensing in complicated matrices.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-Upon-Thames, London, KT1 2EE, UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-Upon-Thames, London, KT1 2EE, UK
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- School of Biotechnology, Badr University in Assiut, Assiut, 2014101, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
4
|
Ray P, Pal S, Sarkar A, Sultana F, Basu A, Show B. Oyster Pearl-Shaped Ternary Iron Chalcogenide, FeSe 0.5Te 0.5, Films on FTO through Electrochemical Growth from the Exchange of Chalcogens Boosted the Enzyme-Free Urea-Sensing Ability toward Real Analytes. ACS APPLIED BIO MATERIALS 2024; 7:1621-1642. [PMID: 38430188 DOI: 10.1021/acsabm.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Here, iron chalcogenide thin films were developed for the first time by using the less hazardous electrodeposition technique at optimized conditions on an FTO glass substrate. The chalcogenides have different surface, morphological, structural, and optical properties, as well as an enzyme-free sensing behavior toward urea. Numerous small crystallites of about ∼20 to 25 nm for FeSe, ∼18 to 25 nm for FeTe, and ∼18 to 22 nm in diameter for FeSeTe are observed with partial agglomeration under an electron microscope, having a mixed phase of tetragonal and orthorhombic structures of FeSe, FeTe, and, FeSeTe, respectively. Profilometry, XRD, FE-SEM, HR-TEM, XPS, EDX, UV-vis spectroscopy, and FT-IR spectroscopy were used for the analysis of binary and ternary composite semiconductors, FeSe, FeTe, and FeSeTe, respectively. Electrochemical experiments were conducted with the chalcogenide thin films and urea as the analyte in phosphate-buffered media at a pH of ∼ 7.4 in the concentration range of 3-413 μM. Cyclic voltammetry was performed to determine the sensitivity of the prepared electrode at an optimized scan rate of 50 mV s-1. The electrodeposited chalcogenide films appeared with a low detection limit and satisfactory sensitivity, of which the ternary chalcogenide film has the lowest LOD of 1.16 μM and the maximum sensitivity of 74.22 μA μM-1 cm-2. The transition metal electrode has a very wide range of detection limit of 1.25-2400 μM with a short response time of 4 s. This fabricated biosensor is capable of exhibiting almost 75% of its starting activity after 2 weeks of storage in the freezer at 4 °C. Simple methods of preparation, a cost-effective process, and adequate electrochemical sensing of urea confirm that the prepared sensor is suitable as an enzyme-free urea sensor and can be utilized for future studies.
Collapse
Affiliation(s)
- Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Arghyadeep Basu
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
5
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Wearable potentiometric biosensor for analysis of urea in sweat. Biosens Bioelectron 2023; 223:114994. [PMID: 36577175 DOI: 10.1016/j.bios.2022.114994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/16/2022]
Abstract
Herein, we introduce wearable potentiometric biosensors on screen-printed carbon electrodes (SPCEs) for on-body and on-site monitoring of urea in sweat. The biosensor architecture was judiciously designed to detect urea at different pHs and incorporate a pH sensor, thus containing polyaniline ink, urease bioink and a polyvinylchloride membrane. Urea detection could be performed in the wide range from 5 to 200 mM at pH 7.0, encompassing urea levels in human sweat. The biosensor response was fast (incubation time 5 min), with no interference from other substances in sweat. Reliable urea detection could be done in undiluted human sweat with a skin-worn flexible device using the pH correction strategy afforded by the pH sensor. The performance of the epidermal biosensor was not affected by severe bending strains. The feasibility of mass production was demonstrated by fabricating epidermal flexible biosensors using slot-die coating with a roll-to-roll technique.
Collapse
|
7
|
Biosensor based on coupled enzyme reactions for determination of arginase activity. Bioelectrochemistry 2022; 146:108137. [DOI: 10.1016/j.bioelechem.2022.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
|