1
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Saqib S, Muneer A, Munir R, Sayed M, Waqas M, Aliyam T, Younas F, Farah MA, Elsadek MF, Noreen S. Green hybrid coagulants for water treatment: An innovative approach using alum and bentonite clay combined with eco-friendly plant materials for batch and column adsorption. ENVIRONMENTAL RESEARCH 2024; 259:119569. [PMID: 38972343 DOI: 10.1016/j.envres.2024.119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Textile industries contribute to water pollution through synthetic dye discharge. This study explores the use of natural bio-coagulants to remove acid dyes from wastewater, investigating factors like pH, coagulant dose, dye concentration, contact time, and temperature for optimal results. The optimum pH and coagulants capabilities of (CAAPP, CAAPH, CBAGL, CBAPP and CBAPH) were 3 (49.6 mg/g), 3 (42.5 mg/g), 3 (38.9 mg/g), 4 (35.7 mg/g), 4 (34.1 mg/g), and 4 (29.4 mg/g) respectively, while treating of selected BRF-221 dyes from water solution. The acidic range (3-4) was found to have the best pH for the maximal coagulation, and the optimal dose were found to be 0.05 g/50 mL. The equilibrium was attained within 45-60 min for all coagulants. After 60 min of shaking, the maximum coagulation capacities (21.9, 21.02, 16.5, 27.9, 25.3, and 23.4 mg/g) of several coagulant composites (CAAGL, CAAPP, CAAPH, CBAGL, CBAPP, CBAPH) were determined. The initial BRF-221 dye concentration in the range of 10-200 mg/L was considered as optimum for gaiting maximum elimination of dye using different coagulants. At a dye value of 100 mg/L of BRF-221, maximal coagulation capacities CAAGL (179.19 mg/g), CAAPP (166.06 mg/g), CAAPH (141.60 mg/g), and CBAGL (126.49 mg/g), CBAPP (113.9 mg/g), CBAPH (93.08 mg/g) were attained. The study found 35 °C to be the optimal temperature for maximum acid dye removal using bio-coagulants. Increasing temperature reduced coagulation capacity, indicating an exothermic process. Freundlich and Langmuir isotherms showed suitability for pseudo-first-order and pseudo-second-order kinetics in biosorption. Thermodynamic parameters were assessed for process feasibility. Effective coagulants demonstrated sensitivity to electrolyte variations. In column studies, adjusting parameters achieved maximum coagulation efficiency for removing BRF-221 dyes. The study successfully applied optimal parameters to remove real textile effluents at a practical scale. SEM, FT-IR, BET and XRD characterized coagulants, providing insights into stability and morphology.
Collapse
Affiliation(s)
- Sidra Saqib
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, 38000, Pakistan
| | - Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Murtaza Sayed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Tayyiba Aliyam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
3
|
Santos CRD, Arcanjo GS, Araújo AAD, Santos LVDS, Amaral MCS. Occurrence, environmental risks, and removal of bisphenol A and its analogues by membrane bioreactors. CHEMICAL ENGINEERING JOURNAL 2024; 494:153278. [DOI: 10.1016/j.cej.2024.153278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Sasi R, Vasu ST. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices. Biodegradation 2024; 35:423-438. [PMID: 38310579 DOI: 10.1007/s10532-023-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Controlled environments are pivotal in all bioconversion processes, influencing the efficacy of biocatalysts. In this study, we designed a batch bioreactor system with a packed immobilization column and a decontamination chamber to enhance phenol and 2,4-dichlorophenol degradation using the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713. When free cells were employed to degrade phenol and 2,4-DCP at a concentration of 1000 mg/L, the cells completely removed the pollutants within 28 h and 66 h, respectively. Simultaneous reductions in chemical oxygen demand and biological oxygen demand were observed (phenol: 30.21 mg/L/h and 16.92 mg/L/h, respectively; 2,4-dichlorophenol: 12.85 mg/L/h and 7.21 mg/L/h, respectively). After assessing the degradation capabilities, the bacterium was immobilized on various matrices (sodium alginate, alginate-chitosan-alginate and polyvinyl alcohol-alginate) to enhance pollutant removal. Hybrid immobilized cells exhibited greater tolerance and degradation capabilities than those immobilized in a single matrix. Among them, polyvinyl alcohol-alginate immobilized cells displayed the highest degradation capacities (up to 2000 mg/L for phenol and 2500 mg/L for 2,4-dichlorophenol). Morphological analysis of the immobilized cells revealed enhanced cell preservation in hybrid matrices. Furthermore, the elucidation of the metabolic pathway through the catechol dioxygenase enzyme assay indicated higher activity of the catechol 1,2-dioxygenase enzyme, suggesting that the bacterium employed an ortho-degradation mechanism for pollutant removal. Additionally, enzyme zymography confirmed the presence of catechol 1,2-dioxygenase, with the molecular weight of the enzyme determined as 245 kDa.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
5
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
6
|
Palacio DA, Oñate P, Esquivel S, Meléndrez M, Pereira E, Rivas BL. Study of the Efficiency of a Polycation Using the Diafiltration Technique in the Removal of the Antibiotic Oxytetracycline Used in Aquaculture. MEMBRANES 2023; 13:828. [PMID: 37888000 PMCID: PMC10608924 DOI: 10.3390/membranes13100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
The presence of antibiotics in aquatic systems in recent years has become a global environmental and public health concern due to the appearance of strains resistant to these antibiotics. Oxytetracycline (OXT) is a high-impact antibiotic used for both human and veterinary consumption, and it is the second most used antibiotic in aquaculture in Chile. Based on the above, this problem is addressed using a linear polymer whose structure is composed of aromatic rings and quaternary ammonium groups, which will help enhance the removal capacity of this antibiotic. To obtain the polycation, a radical polymerization synthesis was carried out using (4-vinylbenzyl)-trimethylammonium chloride as the monomer. The polycation was characterized via Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The removal studies were conducted under different experimental conditions such as pH levels (3.0, 5.0, 7.0, 8.0, and 11.0), ionic strength (0.0-0.50 mg L-1 of NaCl), polymer dose (0.25-25.5 mg), variation of the antibiotic concentration (1-100 mg L-1), and evaluation of the maximum retention capacity, as well as load and discharge studies. The antibiotic retention removal was higher than 80.0%. The antibiotic removal performance is greatly affected by the effect of pH, ionic strength, molar ratio, and/or OXT concentration, as these parameters directly affect the electrostatic interactions between the polymer and the antibiotics. The diafiltration technique was shown to be highly efficient for the removal of OXT, with maximum removal capacities of 1273, 966, and 778 mg OXT g-1 polycation. In conclusion, it can be said that coupling water-soluble polymers to the diafiltration technique is an excellent low-cost way to address the problem of antibiotics in aquatic systems.
Collapse
Affiliation(s)
- Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.); (S.E.)
| | - Pablo Oñate
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.); (S.E.)
| | - Samir Esquivel
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile; (D.A.P.); (S.E.)
| | - Manuel Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070409, Chile
| | - Eduardo Pereira
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción 4070409, Chile
| | - Bernabé L. Rivas
- Universidad San Sebastián, sede Concepción, Concepción 4080871, Chile
| |
Collapse
|
7
|
Wan H, Islam MS, Tarannum T, Shi K, Mills R, Yi Z, Fang F, Lei L, Li S, Ormsbee L, Xu Z, Bhattacharyya D. Reactive membranes for groundwater remediation of chlorinated aliphatic hydrocarbons: competitive dechlorination and cost aspects. Sep Purif Technol 2023; 320:123955. [PMID: 38303990 PMCID: PMC10830166 DOI: 10.1016/j.seppur.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A nanocomposite membrane incorporating reactive Pd-Fe nanoparticles (NPs) was developed to remediate chlorinated aliphatic hydrocarbons (CAHs) from groundwater. Other than recapturing the produced Fen+ for in-situ regeneration, the functionalized polyanions prevented NPs agglomeration and resulting in a spherical Fe0 core (55 nm, O/Fe = 0.05) and an oxidized shell (4 nm, O/Fe = 1.38). The reactive membranes degraded 92% of target CAHs with a residence time of 1.7 seconds. After long-term treatment and regeneration, reusability was confirmed through recovered reactivity, recurrence of Fe0 in X-ray photoelectron spectroscopy, and >96% remaining of Fe and Pd. The total cost (adjusted present value for 20 years) was estimated to be 13.9% lower than the granular activated carbon system, following an EPA work breakdown structure-based cost model. However, non-target CAHs from groundwater can compete for active sites, leading to decreased surface-area normalized dechlorination rate ( k sa ) by 28.2-79.9%. A hybrid nanofiltration (NF)/reactive membrane was proposed to selectively intercept larger competitors, leading to 54% increased dechlorination efficiency and 1.3 to 1.9-fold enlarged k sa . Overall, the practical viability of the developed reactive membranes was demonstrated by the stability, reusability, and cost advantages, while the optional NF strategy could alleviate competitive degradation towards complex water chemistry.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Tahiya Tarannum
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Ke Shi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhiyuan Yi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fumohan Fang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linfeng Lei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyao Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
8
|
Vargas-Berrones K, Ocampo-Perez R, Rodríguez-Torres I, Medellín-Castillo NA, Flores-Ramírez R. Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90741-90756. [PMID: 37462867 DOI: 10.1007/s11356-023-28653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/02/2023] [Indexed: 08/24/2023]
Abstract
Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.
Collapse
Affiliation(s)
- Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Ma del Rosario, San Ciro de Acosta-Rioverde 165, CP 79610, Rioverde, SLP, Mexico
| | - Raul Ocampo-Perez
- Centro de Investigación Y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Israel Rodríguez-Torres
- Instituto de Metalurgia-Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78210, San Luis Potosí, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 8, 78290, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Colonia Lomas Segunda Sección, Avenida Sierra Leona No. 550, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
9
|
Shemer H, Wald S, Semiat R. Challenges and Solutions for Global Water Scarcity. MEMBRANES 2023; 13:612. [PMID: 37367816 DOI: 10.3390/membranes13060612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Climate change, global population growth, and rising standards of living have put immense strain on natural resources, resulting in the unsecured availability of water as an existential resource. Access to high-quality drinking water is crucial for daily life, food production, industry, and nature. However, the demand for freshwater resources exceeds the available supply, making it essential to utilize all alternative water resources such as the desalination of brackish water, seawater, and wastewater. Reverse osmosis desalination is a highly efficient method to increase water supplies and make clean, affordable water accessible to millions of people. However, to ensure universal access to water, various measures need to be implemented, including centralized governance, educational campaigns, improvements in water catchment and harvesting technologies, infrastructure development, irrigation and agricultural practices, pollution control, investments in novel water technologies, and transboundary water cooperation. This paper provides a comprehensive overview of measures for utilizing alternative water sources, with particular emphasis on seawater desalination and wastewater reclamation techniques. In particular, membrane-based technologies are critically reviewed, with a focus on their energy consumption, costs, and environmental impacts.
Collapse
Affiliation(s)
- Hilla Shemer
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shlomo Wald
- Wald Industries, Tor HaAviv 1, Rehovot 7632101, Israel
| | - Raphael Semiat
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
10
|
Wu Y, Liu Y, Kamyab H, Manivasagan R, Rajamohan N, Ngo GH, Xia C. Physico-chemical and biological remediation techniques for the elimination of endocrine-disrupting hazardous chemicals. ENVIRONMENTAL RESEARCH 2023:116363. [PMID: 37295587 DOI: 10.1016/j.envres.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Rajasimman Manivasagan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Gia Huy Ngo
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
11
|
Biofouling in Membrane Bioreactors: Mechanism, Interactions and Possible Mitigation Using Biosurfactants. Appl Biochem Biotechnol 2023; 195:2114-2133. [PMID: 36385366 DOI: 10.1007/s12010-022-04261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Biofouling roots damage to membrane bioreactors (MBRs), such as physical, functional and organisational changes and even therefore clogging of the membrane pores and successive microbial degradation. Further, it blocks the pores, results into a biomass cake and in due course reduces the membrane flux and leads to an increase in the operational costs. MBR fouling contributed to the rise in transmembrane pressure (TMP) and decrease in permeate flux (in case of constant pressure operation mode). Chemical surfactants adopted for the cleaning of membrane surfaces have certain disadvantages such as toxicity manifestations, damage to the membranes and high CMC concentrations. Biosurfactant surfactants have attained increasing interest due to their low toxicity, biodegradability, stability to extreme environmental conditions such as temperatures, pH and tolerance to salinity. The biosurfactants trapped the foulants via micelle formation, which distresses hydrophobic interactions amongst bacteria and the surface. Rhamnolipids as an anionic biosurfactant pose a significant interfacial potential and have affinity to bind organic matter. The present review discusses the problem of biofouling in MBRs, type and interactions of foulants involved and also highlights the mechanisms of biosurfactant cleaning, effect of different parameters, effect of concentration, TMP, flux recovery, permeability, mitigation practices and challenges.
Collapse
|
12
|
Diniz V, Gasparini Fernandes Cunha D, Rath S. Adsorption of recalcitrant contaminants of emerging concern onto activated carbon: A laboratory and pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116489. [PMID: 36257229 DOI: 10.1016/j.jenvman.2022.116489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
According to the World Health Organization (WHO), the definition of water quality indicators, including contaminants of emerging concern (CECs), associated with the development of multi-barrier approaches for wastewater treatment, are crucial steps towards direct potable reuse of water. The aims of this study were 1) quantifying twelve CECs (including pharmaceutical, stimulant, and artificial sweetener compounds) in both untreated and treated wastewater samples in a Brazilian wastewater treatment plant (WWTP) using bidimensional liquid chromatography coupled with tandem mass spectrometry, allowing the selection of five marker (i.e., priority) CECs; 2) evaluating the adsorption potential of such selected CECs [caffeine, hydrochlorothiazide, saccharin, sucralose (SUC), and sulfamethoxazole (SMX)] onto coconut-shell granular activated carbon (GAC); and 3) investigating the removal of the same CECs by a multi-barrier system (pilot-scale, 350 L h-1) treating the effluent of the WWTP and composed of reverse osmosis (RO), photoperoxidation (UV/H2O2), and filtration with GAC. Such technologies were tested separately and in binary or ternary combinations. Eleven and eight CECs were detected and quantified on the untreated and treated wastewater samples of the Brazilian WWTP, respectively. For the treated wastewater, the concentrations ranged from 499 ng L-1 (SMX) to 87,831 ng L-1 (SUC). The adsorption onto AC data fitted the Sips isotherm model, indicating monolayer chemisorption, which was also suggested by the mean adsorption energy values (>16 kJ mol-1). SMX and SUC were the most and the least adsorbed CECs (4.33 and 1.21 mg g-1, respectively). Concerning the pilot-scale treatment plant, the ternary combination (RO + UV/H2O2+GAC) removed >99% of the five marker CECs and promoted reductions on water color, turbidity, as well as on nitrogen and phosphorus concentrations. Further studies on water reuse could prioritize the selected marker CECs as quality indicators. While the removal of marker CECs is one of the WHO performance requirements, the RO + UV/H2O2+GAC system showed promising results as a first approach to direct potable reuse of water.
Collapse
Affiliation(s)
- Vinicius Diniz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro, Cidade Universitária, Campinas, SP, 13083-970, Brazil.
| | - Davi Gasparini Fernandes Cunha
- São Carlos School of Engineering, Department of Hydraulics and Sanitation, University of São Paulo, Avenida Trabalhador São-Carlense, Centro, São Carlos, SP, 13566-590, Brazil
| | - Susanne Rath
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Josué de Castro, Cidade Universitária, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
13
|
Facile Hydrothermal Synthesis of Cu2MoS4 and FeMoS4 for Efficient Adsorption of Chlortetracycline. Catalysts 2022. [DOI: 10.3390/catal13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Contamination of antibiotics in an aqueous environment has attracted wide attention. Developing high-efficiency adsorbents for antibiotics removal is urgent. In this work, two kinds of ternary transition metal chalcogenides—Cu2MoS4 and FeMoS4 with superior adsorption performance were prepared by a facile hydrothermal synthesis method. The microstructure and physicochemical properties of the adsorbents were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The as-prepared Cu2MoS4 and FeMoS4 were found to have dramatic potential for the adsorption of chlortetracycline (CTC) in an aqueous solution with an extremely high adsorption capacity. The Langmuir maximum adsorption capacity of Cu2MoS4 and FeMoS4 to CTC can reach 1203.81 and 2169.19 mg/g, respectively, which goes far beyond the common adsorbents as reported. Moreover, the adsorption kinetics, thermodynamics as well as adsorption mechanism were examined in detail by a batch of adsorption experiments.
Collapse
|
14
|
Mokgope H, Leudjo Taka A, Klink MJ, Pakade VE, Walmsley T. Quantification of some ARVs' removal efficiency from wastewater using a moving bed biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2928-2942. [PMID: 36515197 DOI: 10.2166/wst.2022.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To date, in South Africa alone, there are an estimated 4.5 million people receiving antiretroviral (ARV) therapy. This places South Africa as the country with the largest ARV therapy programme in the world. As a result, there are an increasing number of reports on the occurrence of ARVs in South African waters. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing ARVs from wastewater. A continuous-flow laboratory scale system was designed, built, installed, and operated at a carrier filling rate of 30%, an organic loading rate of 0.6 kg COD/m3.d-1 OLR, a hydraulic retention time of 18h, and a 27.8 mL/min flow rate. The systems were monitored over time for the elimination of conventional wastewater parameters i.e., Biological Oxygen Demand, Chemical Oxygen Demand, and nutrients. The results showed that the MBBR system as a bio-friendly method has high efficiency in removing Nevirapine, Tenofovir, Efavirenz, Ritonavir and Emtricitabine from the synthetic influent sample with an average removal of 62%, 74%, 94%, 94% and 95%, respectively, after 10 days of operation.
Collapse
Affiliation(s)
- Herman Mokgope
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| | - Anny Leudjo Taka
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Michael John Klink
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Vusumzi Emmanuel Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Tara Walmsley
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| |
Collapse
|
15
|
Mukherjee AG, Wanjari UR, Bradu P, Patil M, Biswas A, Murali R, Renu K, Dey A, Vellingiri B, Raja G, Iyer M, Valsala Gopalakrishnan A. Elimination of microplastics from the aquatic milieu: A dream to achieve. CHEMOSPHERE 2022; 303:135232. [PMID: 35671819 DOI: 10.1016/j.chemosphere.2022.135232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have become a significant source of concern as they have emerged as a widespread pollutant that harms the aquatic environment. It has become an enormous challenge, having the capacity to biomagnify and eventually affect human health, biodiversity, aquatic animals, and the environment. This review provides in-depth knowledge of how MPs interact with different toxic organic chemicals, antibiotics, and heavy metals in the aquatic environment and its consequences. Membrane technologies like ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), and dynamic membranes can be highly effective techniques for the removal of MPs. Also, hybrid membrane techniques like advanced oxidation processes (AOPs), membrane fouling, electrochemical processes, and adsorption processes can be incorporated for superior efficiency. The review also focuses on the reactor design and performance of several membrane-based filters and bioreactors to develop practical, feasible, and sustainable membrane technologies. The main aim of this work is to throw light on the alarming scenario of microplastic pollution in the aquatic milieu and strategies that can be adopted to tackle it.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ganesan Raja
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Mahalaxmi Iyer
- Livestock Farming & Bioresources Technology, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Zahmatkesh S, Amesho KTT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: What do we know? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100121. [PMID: 37520795 PMCID: PMC9250822 DOI: 10.1016/j.hazadv.2022.100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Collapse
Key Words
- AOP, advanced oxidation process
- Activated carbon
- Advanced oxidation process
- Algae
- BOD, biological oxygen demand
- COD, chemical oxygen demand
- Chlorination
- DBP, disinfection by-product
- EPS, extracellular polymeric substances
- GAC, granular activated carbon
- Membrane
- Micropollutants
- Ozonation
- PAC, powdered activated carbon
- SARS-CoV-2
- TOC, total organic carbon
- TSS, total suspended solids
- UV irradiation
- UV, ultraviolet
- WWTPs, wastewater treatment plants
- Wastewater
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
17
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
18
|
Zhi K, Yang C, Zheng Y, Zhang R, Toyosi E O, Wu H, Jiang Z. Enhanced Electro-Fenton Degradation of Ciprofloxacin by Membrane Aeration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keda Zhi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Omojayogbe Toyosi E
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
19
|
Recent Progress in the Removal of Legacy and Emerging Organic Contaminants from Wastewater Using Metal-Organic Frameworks: An Overview on Adsorption and Catalysis Processes. MATERIALS 2022; 15:ma15113850. [PMID: 35683144 PMCID: PMC9181615 DOI: 10.3390/ma15113850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Water covers about 70% of the Earth’s surface, but the amount of freshwater available for human use is only 2.5% and, although it is continuously replenished via the water cycle, freshwater is a finite and limited resource. The Earth’s water is affected by pollution and while water quality is an issue of global concern, the specific regulations on contaminants of emerging concern (CECs) are limited. In order to achieve the goals set by EU regulations, the treatment of wastewater is a scientifically and technologically challenging issue. Metal–organic frameworks (MOFs) are promising materials used for the removal of priority and emerging contaminants from wastewater, since they can mitigate those contaminants via both adsorption as well as catalysis processes. MOFs can offer selective adsorption of CECs by various adsorption mechanisms. The catalytic removal of priority and emerging organic contaminants from wastewater using MOFs implies Fenton, electro-Fenton, and photo-Fenton processes. Overall, MOFs can be considered as promising materials for the elimination of priority and emerging organic contaminants from various wastewater types, but the involved processes must be studied in detail for a larger number of compounds.
Collapse
|
20
|
Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water. MEMBRANES 2022; 12:membranes12050503. [PMID: 35629829 PMCID: PMC9144673 DOI: 10.3390/membranes12050503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
In this study, polypropylene porous membranes with an average pore size of 1.25 µm were modified by barrier discharge plasma. Next, molecularly imprinted layers with an imprint of diethyl phthalate (DEP) ware grafted of their surface. In order to optimize the composition of the modifying mixture various solvents, the ratios of functional monomers and the cross-linking monomer as well as various amounts of phthalate were verified. It was shown that the most effective membranes were obtained during polymerization in n-octane with the participation of functional monomers in the ratio 3:7 and the amount of phthalate 7 wt.%. The membranes were tested in the filtration process as well as static and dynamic sorption. In all of these processes, the imprinted membranes showed better properties than those without the imprint. The diethyl phthalate retention coefficient was 36.12% for membranes with a grafting yield of 1.916 mg/cm2. On the other hand, DEP static sorption for the imprinted membranes was 3.87 µmol/g higher than for non-imprinted membranes. Also, in the process of dynamic sorption higher values were observed for membranes with the imprint (DSMIM, 4.12 µmol/g; DSNIM, 1.18 µmol/g). The membranes were also tested under real conditions. In the process of filtration of tap water contaminated with phthalate, the presence of imprints in the membrane structure resulted in more than three times higher sorption values (3.09 µmol/g) than in the case of non-imprinted membranes (1.12 µmol/g).
Collapse
|