1
|
Qadir MB, Jalalah M, Shoukat MU, Ahmad A, Khaliq Z, Nazir A, Anjum MN, Rahman A, Khan MQ, Tahir R, Faisal M, Alsaiari M, Irfan M, Alsareii SA, Harraz FA. Nonwoven/Nanomembrane Composite Functional Sweat Pads. MEMBRANES 2022; 12:membranes12121230. [PMID: 36557137 PMCID: PMC9788416 DOI: 10.3390/membranes12121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 05/17/2023]
Abstract
Sweat is a natural body excretion produced by skin glands, and the body cools itself by releasing salty sweat. Wetness in the underarms and feet for long durations causes itchiness and an unpleasant smell. Skin-friendly reusable sweat pads could be used to absorb sweat. Transportation of moisture and functionality is the current challenge that many researchers are working on. This study aims to develop a functional and breathable sweat pad with antimicrobial and quick drying performance. Three layered functional sweat pads (FSP) are prepared in which the inner layer is made of an optimized needle-punched coolmax/polypropylene nonwoven blend. This layer is then dipped in antimicrobial ZnO solution (2, 4, and 6 wt.%), and super absorbent polymer (SAP) is embedded, and this is called a functional nonwoven (FNW1) sheet. Electrospun nanofiber-based nanomembranes of polyamide-6 are optimized for bead-free fibers. They are used as a middle layer to enhance the pad's functionality, and the third layer is again made of needle-punched optimized coolmax/polypropylene nonwoven sheets. A simple nonwoven-based sweat pad (SSP) is also prepared for comparison purposes. Nonwoven sheets are optimized based on better comfort properties, including air/water vapor permeability and moisture management (MMT). Nonwoven webs having a higher proportion of coolmax show better air permeability and moisture transfer from the inner to the outer layer. Antimicrobial activity of the functional nonwoven layer showed 8 mm of bacterial growth, but SSP and FSP showed only 6 mm of growth against Staphylococcus aureus. FSP showed superior comfort and antibacterial properties. This study could be a footstone toward highly functional sweat pads with remarkable comfort properties.
Collapse
Affiliation(s)
- Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Muhammad Usman Shoukat
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
- Correspondence: (Z.K.); (A.N.); (F.A.H.)
| | - Ahsan Nazir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
- Correspondence: (Z.K.); (A.N.); (F.A.H.)
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Abdul Rahman
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Qamar Khan
- Department of Textile & Clothing, Karachi Campus, National Textile University, Karachi 74900, Pakistan
| | - Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Saeed A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
- Correspondence: (Z.K.); (A.N.); (F.A.H.)
| |
Collapse
|
2
|
Jalalah M, Ahmad A, Saleem A, Qadir MB, Khaliq Z, Khan MQ, Nazir A, Faisal M, Alsaiari M, Irfan M, Alsareii SA, Harraz FA. Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications. MEMBRANES 2022; 12:membranes12111158. [PMID: 36422150 PMCID: PMC9693054 DOI: 10.3390/membranes12111158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Textile-supported nanocomposite as a scaffold has been extensively used in the medical field, mainly to give support to weak or harmed tissues. However, there are some challenges in fabricating the nanofiber/textile composite, i.e., suitable porous structure with defined pore size, less skin contact area, biocompatibility, and availability of degradable materials. Herein, polyamide-6 (PA) nanofibers were synthesized using needleless electrospinning with the toothed wheel as a spinneret. The electrospinning process was optimized using different process and solution parameters. In the next phase, optimized PA nanofiber membranes of optimum fiber diameter with uniform distribution and thickness were used in making nanofiber membrane-textile composite. Different textile fabrics (woven, non-woven, knitted) were developed. The optimized nanofiber membranes were combined with non-woven, woven, and knitted fabrics to make fabric-supported nanocomposite. The nanofiber/fabric composites were compared with available market woven and knitted meshes for mechanical properties, morphology, structure, and chemical interaction analysis. It was found that the tear strength of the nanofiber/woven composite was three times higher than market woven mesh, and the nanofiber/knitted composite was 2.5 times higher than market knitted mesh. The developed composite structures with woven and knitted fabric exhibited improved bursting strength (613.1 and 751.1 Kpa), tensile strength (195.76 and 227.85 N), and puncture resistance (68.76 and 57.47 N), respectively, than market available meshes. All these properties showed that PA nanofibers/textile structures could be utilized as a composite with multifunctional properties.
Collapse
Affiliation(s)
- Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Asad Saleem
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Qamar Khan
- Department of Textile & Clothing, Karachi Campus, National Textile University, Karachi 74900, Pakistan
| | - Ahsan Nazir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - M. Faisal
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Muhammad Irfan
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - S. A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
3
|
Saline Diffusion Modeling for Sodium Chloride Aqueous Solutions: Freezing for Desalination Purposes. SEPARATIONS 2022. [DOI: 10.3390/separations9100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Given the high human demand for freshwater and its consequent scarcity, desalination processing seems to be a key solution, given the vast amount of seawater on the planet. Currently, desalination plants provide about 95 million m3/day freshwater in 177 countries worldwide. However, desalination is an energy-intensive, demanding technique that generally uses fossil fuels and contributes to global warming via greenhouse gas emissions. Freezing/melting desalination (F/M) uses about 70% less thermal energy than the boiling process. Unfortunately, this technique is rarely used, mainly because of salt separation problems at low temperatures close to 0 °C. Most models have determined their results assuming a saline concentration value of the retained liquid; however, there is a significant disagreement in this value. This study proposes a unidimensional model based on thermal and mass diffusion evolution. The model predicts the successful separation of salt-free ice to avoid salt diffusion before encapsulation; the process depends on temperature, saline gradients, and time. The calculations in this paper are based on the salt concentration in the liquid-solid interface, which has been extensively studied, achieving an accurate performance of the proposed model.
Collapse
|