1
|
Li X, Zhang J, Zhang S, Shi S, Lu Y, Leng Y, Li C. Biomarkers for neuromyelitis optica: a visual analysis of emerging research trends. Neural Regen Res 2024; 19:2735-2749. [PMID: 38595291 PMCID: PMC11168523 DOI: 10.4103/nrr.nrr-d-24-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis. Over the past 20 years, the search for biomarkers for neuromyelitis optica has been ongoing. Here, we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica. Research in this area is consistently increasing, with China and the United States leading the way on the number of studies conducted. The Mayo Clinic is a highly reputable institution in the United States, and was identified as the most authoritative institution in this field. Furthermore, Professor Wingerchuk from the Mayo Clinic was the most authoritative expert in this field. Keyword analysis revealed that the terms "neuromyelitis optica" (261 times), "multiple sclerosis" (220 times), "neuromyelitis optica spectrum disorder" (132 times), "aquaporin 4" (99 times), and "optical neuritis" (87 times) were the most frequently used keywords in literature related to this field. Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis. Furthermore, aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder. Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarker for myelin oligodendrocyte glycoprotein antibody-associated disease. Recent biomarkers for neuromyelitis optica include cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein, serum astrocyte damage biomarkers like FAM19A5, serum albumin, and gamma-aminobutyric acid. The latest prospective clinical trials are exploring the potential of these biomarkers. Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder. The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity, specificity, and safety for the accurate diagnosis of neuromyelitis optica.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Jiandong Zhang
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Siqi Zhang
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Shengling Shi
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yi’an Lu
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Ying Leng
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Chunyan Li
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| |
Collapse
|
2
|
Xie Z, Zhou Q, Hu J, He L, Meng H, Liu X, Sun G, Luo Z, Feng Y, Li L, Chu X, Du C, Yang D, Yang X, Zhang J, Ge C, Zhang X, Chen S, Geng M. Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis optica spectrum disorders. J Transl Med 2024; 22:989. [PMID: 39487546 PMCID: PMC11529322 DOI: 10.1186/s12967-024-05801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood. METHODS To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. We then analyzed the peripheral changes of NMOSD, and features related to NMOSD's disease severity. Furthermore, an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha (FAP). RESULTS Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This signature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolipids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with disease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression. CONCLUSIONS Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Huangyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Yuan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Chen Du
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Dabing Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xinying Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xiang Zhang
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Xinrui Hospital, Wuxi, China.
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
| |
Collapse
|
3
|
Wang YL, Zhu MY, Yuan ZF, Ren XY, Guo XT, Hua Y, Xu L, Zhao CY, Jiang LH, Zhang X, Sheng GX, Jiang PF, Zhao ZY, Gao F. Proteomic profiling of cerebrospinal fluid in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. World J Pediatr 2024; 20:259-271. [PMID: 36507981 PMCID: PMC10957615 DOI: 10.1007/s12519-022-00661-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an autoimmune demyelinating disorder of the central nervous system. METHODS Extracted proteins from 34 cerebrospinal fluid (CSF) samples [patients with MOGAD (MOG group, n = 12); healthy controls (HC group, n = 12); patients with MOG seronegative and metagenomics next-generation sequencing-negative inflammatory neurological diseases (IND group, n = 10)] were processed and subjected to label-free quantitative proteomics. Supervised partial least squares-discriminant analysis (PLS-DA) and orthogonal PLS-DA (O-PLS-DA) models were also performed based on proteomics data. Functional analysis of differentially expressed proteins (DEPs) was performed using Gene Ontology, InterPro, and Kyoto Encyclopedia Genes and Genomes. An enzyme-linked immunosorbent assay was used to determine the complement levels in serum from patients with MOGAD. RESULTS Four hundred and twenty-nine DEPs (149 upregulated and 280 downregulated proteins) were identified in the MOG group compared to the HC group according to the P value and fold change (FC). Using the O-PLS-DA model, 872 differentially abundant proteins were identified with variable importance projection (VIP) scores > 1. Five proteins (gamma-glutamyl hydrolase, cathepsin F, interalpha-trypsin inhibitor heavy chain 5, latent transforming growth factor beta-binding protein 4 and leukocyte-associated immunoglobulin-like receptor 1) overlapping between the top 30 DEPs with top-ranked P value and FC and top 30 proteins in PLS-DA VIP lists were acquired. Functional analysis revealed that the dysregulated proteins in the MOG group were primarily involved in complement and coagulation cascades, cell adhesion, axon guidance, and glycosphingolipid biosynthesis compared to the HC group. CONCLUSION The proteomic alterations in CSF samples from children with MOGAD identified in the current study might provide opportunities for developing novel biomarker candidates.
Collapse
Affiliation(s)
- Yi-Long Wang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Meng-Ying Zhu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zhe-Feng Yuan
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Yan Ren
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Tong Guo
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yi Hua
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lu Xu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Cong-Ying Zhao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Li-Hua Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xin Zhang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Guo-Xia Sheng
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Pei-Fang Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
4
|
Xu T, Shi Y, Zheng G, Zhang G. Diagnostic Potential of Two Novel Biomarkers for Neuromyelitis Optica Spectrum Disorder and Multiple Sclerosis. Diagnostics (Basel) 2023; 13:diagnostics13091572. [PMID: 37174963 PMCID: PMC10178292 DOI: 10.3390/diagnostics13091572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Currently, no tests can definitively diagnose and distinguish neuromyelitis optica spectrum disorder (NMOSD) from multiple sclerosis (MS). METHODS Initially, cerebrospinal fluid (CSF) proteomics were employed to uncover the novel biomarkers that differentiate NMOSD from MS into cohorts of 10 MS and 10 NMOSD patients. Subsequently, screening biomarkers were validated using an enzyme-linked immunosorbent assay method and CSF and serum samples from 20 MS patients, 20 NMOSD patients, 20 non-inflammatory neurological controls, and 20 healthy controls. RESULTS In study cohort, insulin-like growth factor-binding protein 7 (IGFBP7) and lysosome-associated membrane glycoprotein 2 (LAMP2) were screened. In validation cohort, serum and CSF IGFBP7 not only exhibited higher levels in MS and NMOSD patients than controls, but also had greatest area under the curve (AUC, above or equal to 0.8) in MS and NMOSD diagnoses. Serum IGFBP7 (0.945) and CSF IGFBP7 (0.890) also had the greatest AUCs for predicting MS progression, while serum LAMP2 had a moderate curve (0.720). CONCLUSIONS IGFBP7 was superior in diagnosing MS and NMOSD, and IGFBP7 and serum LAMP2 performed exceptionally well in predicting the MS progression. These results offered reasons for further investigations into the functions of IGFBP7 and LAMP2 in MS and NMOSD.
Collapse
Affiliation(s)
- Ting Xu
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Yijun Shi
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guanghui Zheng
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guojun Zhang
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing 100070, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| |
Collapse
|
5
|
Thangaleela S, Sivamaruthi BS, Radha A, Kesika P, Chaiyasut C. Neuromyelitis Optica Spectrum Disorders: Clinical Perspectives, Molecular Mechanisms, and Treatments. APPLIED SCIENCES 2023; 13:5029. [DOI: 10.3390/app13085029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Neuromyelitis optica (NMO) is a rare autoimmune inflammatory disorder affecting the central nervous system (CNS), specifically the optic nerve and the spinal cord, with severe clinical manifestations, including optic neuritis (ON) and transverse myelitis. Initially, NMO was wrongly understood as a condition related to multiple sclerosis (MS), due to a few similar clinical and radiological features, until the discovery of the AQP4 antibody (NMO-IgG/AQP4-ab). Various etiological factors, such as genetic-environmental factors, medication, low levels of vitamins, and others, contribute to the initiation of NMO pathogenesis. The autoantibodies against AQP4 target the AQP4 channel at the blood–brain barrier (BBB) of the astrocyte end feet, which leads to high permeability or leakage of the BBB that causes more influx of AQP4-antibodies into the cerebrospinal fluid (CSF) of NMO patients. The binding of AQP4-IgG onto the AQP4 extracellular epitopes initiates astrocyte damage through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). Thus, a membrane attack complex is formed due to complement cascade activation; the membrane attack complex targets the AQP4 channels in the astrocytes, leading to astrocyte cell damage, demyelination of neurons and oligodendrocytes, and neuroinflammation. The treatment of NMOSD could improve relapse symptoms, restore neurological functions, and alleviate immunosuppression. Corticosteroids, apheresis therapies, immunosuppressive drugs, and B cell inactivating and complement cascade blocking agents have been used to treat NMOSD. This review intends to provide all possible recent studies related to molecular mechanisms, clinical perspectives, and treatment methodologies of the disease, particularly focusing on recent developments in clinical criteria and therapeutic formulations.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Tan W, Li B, Wang Z, Zou J, Jia Y, Yoshida S, Zhou Y. Novel Potential Biomarkers for Retinopathy of Prematurity. Front Med (Lausanne) 2022; 9:840030. [PMID: 35187013 PMCID: PMC8848752 DOI: 10.3389/fmed.2022.840030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is the main risk factor for vision-threatening disease in premature infants with low birth weight. An accumulating number of independent studies have focused on ROP pathogenesis and have demonstrated that laser photocoagulation therapy and/or anti-VEGF treatment are effective. However, early diagnosis of ROP is still critical. At present, the main method of ROP screening is based on binocular indirect ophthalmoscopy. However, the judgment of whether ROP occurs and whether treatment is necessary depends largely on ophthalmologists with a great deal of experience. Therefore, it is essential to develop a simple, accurate and effective diagnostic method. This review describes recent findings on novel biomarkers for the prediction, diagnosis and prognosis of ROP patients. The novel biomarkers were separated into the following categories: metabolites, cytokines and growth factors, non-coding RNAs, iconography, gut microbiota, oxidative stress biomarkers, and others. Biomarkers with high sensitivity and specificity are urgently needed for the clinical applications of ROP. In addition, using non-invasive or minimally invasive methods to obtain samples is also important. Our review provides an overview of potential biomarkers of ROP.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
7
|
Maghbooli Z, Naser Moghadasi A, Rezaeimanesh N, Omidifar A, Varzandi T, Sahraian MA. The possible role of Interleukin-6 as a regulator of insulin sensitivity in patients with neuromyelitis optica spectrum disorder. BMC Neurol 2021; 21:167. [PMID: 33879088 PMCID: PMC8056566 DOI: 10.1186/s12883-021-02198-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is associated with inflammatory mediators that may also trigger downstream signaling pathways leading to reduce insulin sensitivity. Methods We aimed to determine the risk association of hyperinsulinemia in NMOSD patients with seropositive AQP4-IgG and the serum levels of interleukin (IL)-6 and IL-17A compared with the control group. Serum levels of metabolic (Insulin, Fasting Blood Sugar (FBS), lipid profile) and inflammatory (IL-6 and IL-17) markers were assessed in 56 NMOSD patients and 100 controls. Results Hyperinsulinemia was more prevalent in NMOSD patients independent of age, sex and body mass index (BMI) (48.2% vs. 26%, p = 0.005) compared to control group. After adjusting age, sex and BMI, there was significant association between lower insulin sensitivity (IS) and NMOSD risk (95% CI: Beta = 0.73, 0.62 to 0.86, p = 0.0001). Circulating levels of IL-6 and IL-17 were higher in NMOSD patients, and only IL-6 had an effect modifier for the association between lower insulin sensitivity and NMOSD risk. Conclusions Our data suggests that inflammatory pathogenesis of NMOSD leads to hyperinsulinemia and increases the risk of insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02198-5.
Collapse
Affiliation(s)
- Zhila Maghbooli
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Rezaeimanesh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Omidifar
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Chang R, Zhu Y, Xu J, Chen L, Su G, Kijlstra A, Yang P. Identification of Urine Metabolic Biomarkers for Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:637489. [PMID: 33718374 PMCID: PMC7947328 DOI: 10.3389/fcell.2021.637489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The diagnosis of Vogt-Koyanagi-Harada (VKH) disease is mainly based on a complex clinical manifestation while it lacks objective laboratory biomarkers. To explore the potential molecular biomarkers for diagnosis and disease activity in VKH, we performed an untargeted urine metabolomics analysis by ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Through univariate and multivariate statistical analysis, we found 9 differential metabolites when comparing VKH patients with healthy controls, and 26 differential metabolites were identified when comparing active VKH patients with inactive VKH patients. Pathway enrichment analysis showed that glycine, serine and threonine metabolism, and arginine and proline metabolism were significantly altered in VKH versus healthy controls. Lysine degradation and biotin metabolism pathways were significantly altered in active VKH versus inactive VKH. Furthermore, the receiver operating characteristic (ROC) curve analysis revealed that the combination of acetylglycine and gamma-glutamylalanine could differentiate VKH from healthy controls with an area under the curve (AUC) of 0.808. A combination of ureidopropionic acid and 5′-phosphoribosyl-5-amino-4-imidazolecarboxamide (AICAR) had an excellent AUC of 0.958 for distinguishing active VKH from inactive VKH. In summary, this study identified abnormal metabolites in urine of patients with VKH disease. Further studies are needed to confirm whether these metabolites are specific for this disease.
Collapse
Affiliation(s)
- Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ying Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lin Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
9
|
Li W, Liu J, Tan W, Zhou Y. The role and mechanisms of Microglia in Neuromyelitis Optica Spectrum Disorders. Int J Med Sci 2021; 18:3059-3065. [PMID: 34400876 PMCID: PMC8364446 DOI: 10.7150/ijms.61153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune neurological disease that can cause blindness and disability. As the major mediators in the central nervous system, microglia plays key roles in immunological regulation in neuroinflammatory diseases, including NMOSD. Microglia can be activated by interleukin (IL)-6 and type I interferons (IFN-Is) during NMOSD, leading to signal transducer and activator of transcription (STAT) activation. Moreover, complement C3a secreted from activated astrocytes may induce the secretion of complement C1q, inflammatory cytokines and progranulin (PGRN) by microglia, facilitating injury to microglia, neurons, astrocytes and oligodendrocytes in an autocrine or paracrine manner. These processes involving activated microglia ultimately promote the pathological course of NMOSD. In this review, recent research progress on the roles of microglia in NMOSD pathogenesis is summarized, and the mechanisms of microglial activation and microglial-mediated inflammation, and the potential research prospects associated with microglial activation are also discussed.
Collapse
Affiliation(s)
- Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|