1
|
Phupaboon S, Matra M, Prommachart R, Totakul P, Wanapat M. Bioefficiency of microencapsulated hemp leaf phytonutrient-based extracts to enhance in vitro rumen fermentation and mitigate methane production. PLoS One 2024; 19:e0312575. [PMID: 39480840 PMCID: PMC11527300 DOI: 10.1371/journal.pone.0312575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
The objective was to assess the supplementation with microencapsulation of hemp leaf extract (mHLE) utilized as a rumen enhancer on in vitro rumen fermentation and to enhance the bioavailability of active compounds for antimicrobial action, particularly in protozoa and methanogen populations. The feed treatments were totally randomized in the experimental design, with different levels of mHLE diet supplemented at 0, 4, 6 and 8% of total DM substrate and added to an R:C ratio of 60:40. During fermentation, gas kinetics production, nutrient degradability, ammonia nitrogen concentration, volatile fatty acid (VFA) profiles, methane production, and the microbial population were measured. The supplemented treatment at 6% of total DM substrate affected reductions in gas kinetics, cumulative gas production, and volatile fatty acid profiles, especially the acetate and acetate to propionate ratio. Whereas propionate proportion and total volatile fatty acid concentration were enhanced depending on the increase of nutrients in vitro dry matter degradability (IVDMD) after 12 h of post-fermentation at a R:C ratio of 60:40 (P < 0.05). Consequently, mHLE addition resulted in optimal ruminal pH and increased nutrient degradability, followed by ammonia nitrogen concentrations (P < 0.05), which were enhanced by dominant cellulolytic bacteria, particularly Ruminococcus albus and Ruminococcus flavefaciens, which showed the highest growth rates in the rumen ecology. Therefore, mHLE, a rich phytonutrient feed additive, affected the methanogen population, reduced the calculated methane production and can be a potential supplement in the ruminant diet.
Collapse
Affiliation(s)
- Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Ronnachai Prommachart
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology, Tawan-Ok, Chonburi, Thailand
| | - Pajaree Totakul
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Tabiś A, Szumny A, Bania J, Pacyga K, Lewandowska K, Kupczyński R. Comparison of the Effects of Essential Oils from Cannabis sativa and Cannabis indica on Selected Bacteria, Rumen Fermentation, and Methane Production-In Vitro Study. Int J Mol Sci 2024; 25:5861. [PMID: 38892045 PMCID: PMC11172183 DOI: 10.3390/ijms25115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to evaluate the effects of essential oils (EOs) extracted from Cannabis sativa L. and Cannabis indica Lam. on in vitro ruminal fermentation characteristics, selected rumen microbial populations, and methane production. GC-MS analyses allowed us to identify 89 compounds in both EOs. It was found that E-β-caryophyllene predominated in C. sativa (18.4%) and C. indica (24.1%). An in vitro (Ankom) test was performed to analyse the control and monensin groups, as well as the 50 µL or 100 µL EOs. The samples for volatile fatty acids (VFAs), lactate, and microbiological analysis were taken before incubation and after 6 and 24 h. The application of EOs of C. indica resulted in an increase in the total VFAs of acetate and propionate after 6 h of incubation. The applied EOs had a greater impact on the reduction in methane production after 6 h, but no apparent effect was noted after 24 h. Lower concentrations of C. sativa and C. indica had a more pronounced effect on Lactobacillus spp. and Buryrivibrio spp. than monensin. The presented findings suggest that C. sativa and C. indica supplementation can modify ruminal fermentation, the concentrations of specific volatile fatty acids, and methane production.
Collapse
Affiliation(s)
- Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.T.); (J.B.)
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.T.); (J.B.)
| | - Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (K.P.); (K.L.)
| | - Kamila Lewandowska
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (K.P.); (K.L.)
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (K.P.); (K.L.)
| |
Collapse
|
3
|
Lester RE, Macqueen A, Armstrong EK, Dodemaide DT, Dwyer GK, Mock TS, Payne S, Smith M, Storen M, Webb L. Can freshwater plants and algae act as an effective feed supplement to reduce methane emissions from ruminant livestock? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169296. [PMID: 38104811 DOI: 10.1016/j.scitotenv.2023.169296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Methane production by livestock is a substantial component of greenhouse gas emissions worldwide. The marine red algae, Asparagopsis taxiformis, has been identified as a possible supplement in livestock feeds due to its potent inhibition of methane production but currently is unable to be produced at scale. Finding additional taxa that inhibit methane production is therefore desirable. Here we provide foundational evidence of methanogenesis-inhibiting properties in Australian freshwater plants and algae, reviewing candidate species and testing species' chemical composition and efficacy in vitro. Candidate plant species and naturally-occurring algal mixes were collected and assessed for ability to reduce methane in batch testing and characterised for biochemical composition, lipids and fatty acids, minerals and DNA. We identified three algal mixes and one plant (Montia australasica) with potential to reduce methane yield in in vitro batch assay trials. All three algal mixes contained Spirogyra, although additional testing would be needed to confirm this alga was responsible for the observed activity. For the two samples that underwent multiple dose testing, Algal mix 1 (predominantly Spirogyra maxima) and M. australasica, there seems to be an optimum dose but sources, harvesting and storage conditions potentially determine their methanogenesis-inhibiting activity. Based on their compositions, fatty acids are likely to be acting to reduce methane in Algal mix 1 while M. australasica likely contains substantial amounts of the flavonoids apigenin and kaempferol, which are associated with methane reduction. Based on their mineral composition, the samples tested would be safe for livestock consumption at an inclusion rate of 20%. Thus, we identified multiple Australian species that have potential to be used as a feed supplement to reduce methane yield in livestock which may be suitable for individual farmers to grow and feed, reducing complexities of supply associated with marine alternatives and suggesting avenues for investigation for similar species elsewhere.
Collapse
Affiliation(s)
- Rebecca E Lester
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
| | - Ashley Macqueen
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Emily K Armstrong
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - David T Dodemaide
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Georgia K Dwyer
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Thomas S Mock
- Nutrition and Seafood Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephanie Payne
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Michael Smith
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Michaela Storen
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Lawrence Webb
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| |
Collapse
|
4
|
Battelli M, Nielsen MO, Nørskov NP. Dose- and substrate-dependent reduction of enteric methane and ammonia by natural additives in vitro. Front Vet Sci 2023; 10:1302346. [PMID: 38026671 PMCID: PMC10657808 DOI: 10.3389/fvets.2023.1302346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Ruminants contribute to global warming by emitting greenhouse gasses, particularly methane (CH4) which is a product of rumen fermentation. The use of feed additives able to modulate rumen fermentation is a promising strategy to reduce enteric CH4 and ammonia (NH3) emissions. Among the various strategies investigated, plant secondary metabolites (PSMs) have attracted attention due to their apparent potential to reduce enteric CH4 and NH3 emissions, and it would be possible to use such compounds as feed additives in organic production systems. In an in vitro system simulating rumen fermentation, we have tested the impact of different classes of naturally occurring PSMs; catechin and quercetin (flavonoids), salicylic acid (phenolic acid) and tannic acid (hydrolysable tannin). The PSMs were added to two different basal feeds (maize and grass silages) at three inclusion doses 1.5, 3 and 6% of the feed dry matter (DM). CH4 production was significantly lowered upon addition of quercetin to two basal feeds at doses of 3 and 6%, and this without changes in concentrations of total volatile fatty acid (VFA) produced during fermentation. Quercetin, as the only tested additive, reduced CH4 production, and when added to maize silage and grass silage, the reduction increased linearly with increasing dose, ie., by 51 and 43%, respectively, at a dose of 3% of feed DM and by 86 and 58%, respectively, at a dose of 6% of feed DM. Moreover, quercetin significantly reduced NH3 concentration by >12% at doses of 3 and 6% in feed DM irrespective of the basal feed used as compared to when the basal feeds were incubated alone. Although none of the other additives affected CH4 formation, several additives had significant impacts on concentrations of NH3 and VFAs in the incubated fluid after fermentation. This study demonstrated a dose-dependent ability of quercetin to reduce CH4 emission from rumen fermentation, however, the magnitude of the suppression of CH4 depended on the basal feed. Furthermore, quercetin reduced NH3 concentration irrespective of the basal feed type. These findings encourage to in vivo studies to verify whether quercetin can reduce CH4 emission also in cows.
Collapse
Affiliation(s)
- Marco Battelli
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Mette Olaf Nielsen
- Department of Animal and Veterinary Sciences, AU Viborg – Research Center Foulum, Aarhus University, Tjele, Denmark
| | - Natalja P. Nørskov
- Department of Animal and Veterinary Sciences, AU Viborg – Research Center Foulum, Aarhus University, Tjele, Denmark
| |
Collapse
|
5
|
Nørskov NP, Battelli M, Curtasu MV, Olijhoek DW, Chassé É, Nielsen MO. Methane reduction by quercetin, tannic and salicylic acids: influence of molecular structures on methane formation and fermentation in vitro. Sci Rep 2023; 13:16023. [PMID: 37749362 PMCID: PMC10519955 DOI: 10.1038/s41598-023-43041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Plant secondary metabolites (PSMs) can potentially reduce ruminal methane formation. However, related to differences in their molecular structures, it is not yet clear what causes an anti-methanogenic effect. In an in vitro system simulating rumen fermentation, we investigated the impact of eight compounds with distinct chemical characteristics (gallic and salicylic acids, tannic acid, catechin, epicatechin, quercetin, rutin, and salicin) when added to a basal feed (maize silage) at a concentration of 12% of the feed dry matter. After 48 h of incubation in buffered rumen fluid, methane production was significantly lowered by quercetin (43%), tannic acid (39%) and salicylic acid (34%) compared to the control (maize silage alone) and without changes in total volatile fatty acid production during fermentation. No other PSM reduced methane formation as compared to control but induced significant differences on total volatile fatty acid production. The observed differences were related to lipophilicity, the presence of double bond and carbonyl group, sugar moieties, and polymerization of the compounds. Our results indicate the importance of distinct molecular structures of PSMs and chemical characteristics for methane lowering properties and volatile fatty acid formation. Further systematic screening studies to establish the structure-function relationship between PSMs and methane reduction are warranted.
Collapse
Affiliation(s)
- Natalja P Nørskov
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| | - Marco Battelli
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Mihai V Curtasu
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Dana W Olijhoek
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Élisabeth Chassé
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Mette Olaf Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|