1
|
Tian K, Zhang J, Liu H, Wang R, Zhang Z. Mechanism of carbonized humic acid and magnesium aluminum-layered double hydroxide promoting biohydrogen generation. BIORESOURCE TECHNOLOGY 2024; 413:131563. [PMID: 39362343 DOI: 10.1016/j.biortech.2024.131563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Dark fermentation (DF) is prone to low hydrogen (H2) yield. In this work, magnesium aluminum-layered double hydroxide and carbonized humic acid (MgAl-LDH/CHA) was synthesized by co-precipitation to reveal the mechanism in rising bioH2 generation. The results indicated that MgAl-LDH released Mg and Al ions slowly in DF system, improving the activity of H2-producing microbes (HPM) for more H2. The H2 yield increased from 169.3 mL/g glucose to 244.9 mL/g glucose, which was 44.7 % higher than that for the control yield. MgAl-LDH/CHA increased Proteobacteria content from 30.9 % to 43.7 %, making it form a complex microbial community and participate in DF metabolism with Firmicutes and other microbes together. Besides, MgAl-LDH/CHA could serve as an electron shuttle that likely effectively promotes electron transfer in DF, significantly reduced the energy requirements of HPM, thus raising metabolic activity. It provides direction for the multi-element composite applied in DF system.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hui Liu
- Shandong Institute of Geophysical &Geochemical Exploration, Jinan 250013, China.
| | - Ruixi Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhengyi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
2
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
4
|
Zhang F, Wang L, Jin J, Pang Y, Shi H, Fang Z, Wang H, Du Y, Hu Y, Zhang Y, Ding X, Zhu Z. Insights into the genetic influences of the microbiota on the life span of a host. Front Microbiol 2023; 14:1138979. [PMID: 37601381 PMCID: PMC10434519 DOI: 10.3389/fmicb.2023.1138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Escherichia coli (E. coli) mutant strains have been reported to extend the life span of Caenorhabditis elegans (C. elegans). However, the specific mechanisms through which the genes and pathways affect aging are not yet clear. In this study, we fed Drosophila melanogaster (fruit fly) various E. coli single-gene knockout strains to screen mutant strains with an extended lifespan. The results showed that D. melanogaster fed with E. coli purE had the longest mean lifespan, which was verified by C. elegans. We conducted RNA-sequencing and analysis of C. elegans fed with E. coli purE (a single-gene knockout mutant) to further explore the underlying molecular mechanism. We used differential gene expression (DGE) analysis, enrichment analysis, and gene set enrichment analysis (GSEA) to screen vital genes and modules with significant changes in overall expression. Our results suggest that E. coli mutant strains may affect the host lifespan by regulating the protein synthesis rate (cfz-2) and ATP level (catp-4). To conclude, our study could provide new insights into the genetic influences of the microbiota on the life span of a host and a basis for developing anti-aging probiotics and drugs.
Collapse
Affiliation(s)
- Fang Zhang
- Morphological Experiment Center, Xuzhou Medical University, Xuzhou, China
| | - Liying Wang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Jiayu Jin
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yulu Pang
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Shi
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Fang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujie Du
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufan Hu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingchun Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyue Ding
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Kotronarou K, Charalambous A, Evangelou A, Georgiou O, Demetriou A, Apidianakis Y. Dietary Stimuli, Intestinal Bacteria and Peptide Hormones Regulate Female Drosophila Defecation Rate. Metabolites 2023; 13:metabo13020264. [PMID: 36837883 PMCID: PMC9965912 DOI: 10.3390/metabo13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Peptide hormones control Drosophila gut motility, but the intestinal stimuli and the gene networks coordinating this trait remain poorly defined. Here, we customized an assay to quantify female Drosophila defecation rate as a proxy of intestinal motility. We found that bacterial infection with the human opportunistic bacterial pathogen Pseudomonas aeruginosa (strain PA14) increases defecation rate in wild-type female flies, and we identified specific bacteria of the fly microbiota able to increase defecation rate. In contrast, dietary stress, imposed by either water-only feeding or high ethanol consumption, decreased defecation rate and the expression of enteroendocrine-produced hormones in the fly midgut, such as Diuretic hormone 31 (Dh31). The decrease in defecation due to dietary stress was proportional to the impact of each stressor on fly survival. Furthermore, we exploited the Drosophila Genetic Reference Panel wild type strain collection and identified strains displaying high and low defecation rates. We calculated the narrow-sense heritability of defecation rate to be 91%, indicating that the genetic variance observed using our assay is mostly additive and polygenic in nature. Accordingly, we performed a genome-wide association (GWA) analysis revealing 17 candidate genes linked to defecation rate. Downregulation of four of them (Pmp70, CG11307, meso18E and mub) in either the midgut enteroendocrine cells or in neurons reduced defecation rate and altered the midgut expression of Dh31, that in turn regulates defecation rate via signaling to the visceral muscle. Hence, microbial and dietary stimuli, and Dh31-controlling genes, regulate defecation rate involving signaling within and among neuronal, enteroendocrine, and visceral muscle cells.
Collapse
|