1
|
Chancellor A, Constantin D, Berloffa G, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2025; 58:431-447.e10. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
2
|
Bueschl C, Riquelme G, Zabalegui N, Rey MA, Monge ME. Tidy-Direct-to-MS: An Open-Source Data-Processing Pipeline for Direct Mass Spectrometry-Based Metabolomics Experiments. J Proteome Res 2024; 23:3208-3216. [PMID: 38833568 DOI: 10.1021/acs.jproteome.3c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Direct-to-Mass Spectrometry and ambient ionization techniques can be used for biochemical fingerprinting in a fast way. Data processing is typically accomplished with vendor-provided software tools. Here, a novel, open-source functionality, entitled Tidy-Direct-to-MS, was developed for data processing of direct-to-MS data sets. It allows for fast and user-friendly processing using different modules for optional sample position detection and separation, mass-to-charge ratio drift detection and correction, consensus spectra calculation, and bracketing across sample positions as well as feature abundance calculation. The tool also provides functionality for the automated comparison of different sets of parameters, thereby assisting the user in the complex task of finding an optimal combination to maximize the total number of detected features while also checking for the detection of user-provided reference features. In addition, Tidy-Direct-to-MS has the capability for data quality review and subsequent data analysis, thereby simplifying the workflow of untargeted ambient MS-based metabolomics studies. Tidy-Direct-to-MS is implemented in the Python programming language as part of the TidyMS library and can thus be easily extended. Capabilities of Tidy-Direct-to-MS are showcased in a data set acquired in a marine metabolomics study reported in MetaboLights (MTBLS1198) using a transmission mode Direct Analysis in Real Time-Mass Spectrometry (TM-DART-MS)-based method.
Collapse
Affiliation(s)
- Christoph Bueschl
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Maximilian A Rey
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Pulvirenti A, Barbagallo M, Putignano AR, Pea A, Polidori R, Upstill-Goddard R, Cortese N, Kunderfranco P, Brunelli L, De Simone G, Pastorelli R, Spaggiari P, Nappo G, Jamieson NB, Zerbi A, Chang DK, Capretti G, Marchesi F. Integrating metabolic profiling of pancreatic juice with transcriptomic analysis of pancreatic cancer tissue identifies distinct clinical subgroups. Front Oncol 2024; 14:1405612. [PMID: 38988711 PMCID: PMC11234733 DOI: 10.3389/fonc.2024.1405612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Metabolic reprogramming is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC). A pancreatic juice (PJ) metabolic signature has been reported to be prognostic of oncological outcome for PDAC. Integration of PJ profiling with transcriptomic and spatial characterization of the tumor microenvironment would help in identifying PDACs with peculiar vulnerabilities. Methods We performed a transcriptomic analysis of 26 PDAC samples grouped into 3 metabolic clusters (M_CL) according to their PJ metabolic profile. We analyzed molecular subtypes and transcriptional differences. Validation was performed by multidimensional imaging on tumor slides. Results Pancreatic juice metabolic profiling was associated with PDAC transcriptomic molecular subtypes (p=0.004). Tumors identified as M_CL1 exhibited a non-squamous molecular phenotype and demonstrated longer survival. Enrichment analysis revealed the upregulation of immune genes and pathways in M_CL1 samples compared to M_CL2, the group with worse prognosis, a difference confirmed by immunofluorescence on tissue slides. Enrichment analysis of 39 immune signatures by xCell confirmed decreased immune signatures in M_CL2 compared to M_CL1 and allowed a stratification of patients associated with longer survival. Discussion PJ metabolic fingerprints reflect PDAC molecular subtypes and the immune microenvironment, confirming PJ as a promising source of biomarkers for personalized therapy.
Collapse
Affiliation(s)
- Alessandra Pulvirenti
- Section of Pancreatic Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Surgical Oncological and Gastroenterological Sciences (DiSCOG), University of Padua, Padua, Italy
| | - Marialuisa Barbagallo
- Department of Immunology and Inflammation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Anna Rita Putignano
- Department of Immunology and Inflammation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Pea
- Department of General and Pancreatic Surgery-The Pancreas Institute, Verona University Hospital Trust, Verona, Italy
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca Polidori
- Department of Immunology and Inflammation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rosie Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nina Cortese
- Department of Immunology and Inflammation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Laura Brunelli
- Laboratory of Metabolites and Proteins in Translational Research, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giulia De Simone
- Laboratory of Metabolites and Proteins in Translational Research, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Roberta Pastorelli
- Laboratory of Metabolites and Proteins in Translational Research, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Paola Spaggiari
- Pathology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Section of Pancreatic Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Nigel B. Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Alessandro Zerbi
- Section of Pancreatic Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Giovanni Capretti
- Section of Pancreatic Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Vacchini A, Chancellor A, Yang Q, Colombo R, Spagnuolo J, Berloffa G, Joss D, Øyås O, Lecchi C, De Simone G, Beshirova A, Nosi V, Loureiro JP, Morabito A, De Gregorio C, Pfeffer M, Schaefer V, Prota G, Zippelius A, Stelling J, Häussinger D, Brunelli L, Villalta P, Lepore M, Davoli E, Balbo S, Mori L, De Libero G. Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells. Sci Immunol 2024; 9:eadn0126. [PMID: 38728413 DOI: 10.1126/sciimmunol.adn0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Chiara Lecchi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| |
Collapse
|
5
|
Soldani C, De Simone G, Polidoro MA, Morabito A, Franceschini B, Colombo FS, Anselmo A, Milana F, Lleo A, Torzilli G, Pastorelli R, Donadon M, Brunelli L. Riboflavin-LSD1 axis participates in the in vivo tumor-associated macrophage morphology in human colorectal liver metastases. Cancer Immunol Immunother 2024; 73:63. [PMID: 38430255 PMCID: PMC10908638 DOI: 10.1007/s00262-024-03645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment (TME). In colorectal liver metastasis (CLM), TAM morphology correlates with prognosis, with smaller TAMs (S-TAMs) conferring a more favorable prognosis than larger TAMs (L-TAMs). However, the metabolic profile of in vivo human TAM populations remains unknown. Multiparametric flow cytometry was used to freshly isolate S- and L-TAMs from surgically resected CLM patients (n = 14S-, 14L-TAMs). Mass spectrometry-based metabolomics analyses were implemented for the metabolic characterization of TAM populations. Gene expression analysis and protein activity were used to support the biochemical effects of the enzyme-substrate link between riboflavin and (lysine-specific demethylase 1A, LSD1) with TAM morphologies. L-TAMs were characterized by a positive correlation and a strong association between riboflavin and TAM morphologies. Riboflavin in both L-TAMs and in-vitro M2 polarized macrophages modulates LSD1 protein expression and activity. The inflammatory stimuli promoted by TNFα induced the increased expression of riboflavin transporter SLC52A3 and LSD1 in M2 macrophages. The modulation of the riboflavin-LSD1 axis represents a potential target for reprogramming TAM subtypes, paving the way for promising anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia De Simone
- Laboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- Department of Biotechnologies and Biosciences, Università degli Studi Milano Bicocca, Milan, Italy
| | - Michela Anna Polidoro
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Aurelia Morabito
- Laboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Struttura Complessa di Patologia Clinica, Laboratorio di Citometria, Milano, Italy
| | - Achille Anselmo
- Flow Cytometry Resource, Advanced Cytometry Technical Application Laboratory, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Flavio Milana
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan, Italy
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan, Italy
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Roberta Pastorelli
- Laboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Matteo Donadon
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy.
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
- Department of General Surgery, University Maggiore Hospital, Novara, Italy.
| | - Laura Brunelli
- Laboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
6
|
Sun M, Zhao X, Li X, Wang C, Lin L, Wang K, Sun Y, Ye W, Li H, Zhang Y, Huang C. Aerobic Exercise Ameliorates Liver Injury in Db/Db Mice by Attenuating Oxidative Stress, Apoptosis and Inflammation Through the Nrf2 and JAK2/STAT3 Signalling Pathways. J Inflamm Res 2023; 16:4805-4819. [PMID: 37901382 PMCID: PMC10612520 DOI: 10.2147/jir.s426581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Diabetes mellitus (DM) implicates oxidative stress, apoptosis, and inflammation, all of which may contribute liver injury. Aerobic exercise is assured to positively regulate metabolism in the liver. This project was designed to investigate whether and how aerobic exercise improves DM-induced liver injury. Methods Seven-week-old male db/db mice and age-matched m/m mice were randomly divided into a rest control group or a group that received 12 weeks of aerobic exercise by treadmill training (10 m/min). Haematoxylin and eosin (HE) staining, electron microscopy, Oil Red O staining and TUNEL assays were used to evaluate the histopathological changes in mouse liver. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TRIG), cholesterol (CHOL) were analyzed by serum biochemical analysis. Interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and tissue levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were analyzed via ELISA. Nuclear factor E2-associated factor-2 (Nrf2), nuclear factor κB (NF-κB) and JAK2/STAT3 pathway-related proteins were measured by immunofluorescence, Western blotting and q-PCR. F4/80 expression in liver tissues was assessed by immunohistochemistry. Results In diabetic mice, exercise training significantly decreased the levels of serum TRIG, CHOL, IL-6, TNF-α, ALT and AST; prevented weight gain, hyperglycaemia, and impaired glucose and insulin tolerance. Morphologically, exercise mitigated the diabetes-induced increase in liver tissue microvesicles, inflammatory cells, F4/80 (macrophage marker) levels, and TUNEL-positive cells. In addition, exercise reduced the apoptosis index, which is consistent with the results for caspase-3 and Bax. Additionally, exercise significantly increased SOD activity, decreased MDA levels, activated Nrf2 and decreased the expression of NF-kB, phosphorylated JAK2 and STAT3 proteins in the livers of diabetic mice. Conclusion This study demonstrated that aerobic exercise reversed liver dysfunction in db/db mice with T2DM by reducing oxidative stress, apoptosis and inflammation, possibly by enhancing Nrf2 expression and inhibiting the JAK2/STAT3 cascade response.
Collapse
Affiliation(s)
- Meiyan Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
| | - Xingyue Li
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
| | - Chunling Wang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
| | - Lili Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
| | - Yingui Sun
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
| | - Wei Ye
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Haiyan Li
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Chaolu Huang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261053, People’s Republic of China
- Department of Clinical Medicine, Qiandongnan Ethnic Vocational and Technical College, Kaili, 556000, People’s Republic of China
| |
Collapse
|
7
|
Boso D, Tognon M, Curtarello M, Minuzzo S, Piga I, Brillo V, Lazzarini E, Carlet J, Marra L, Trento C, Rasola A, Masgras I, Caporali L, Del Ben F, Brisotto G, Turetta M, Pastorelli R, Brunelli L, Navaglia F, Esposito G, Grassi A, Indraccolo S. Anti-VEGF therapy selects for clones resistant to glucose starvation in ovarian cancer xenografts. J Exp Clin Cancer Res 2023; 42:196. [PMID: 37550722 PMCID: PMC10405561 DOI: 10.1186/s13046-023-02779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis. METHODS Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy. RESULTS Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation. CONCLUSION A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.
Collapse
Affiliation(s)
- Daniele Boso
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - Martina Tognon
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | - Ilaria Piga
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | | | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - Jessica Carlet
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Ludovica Marra
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Chiara Trento
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Leonardo Caporali
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Filippo Navaglia
- Laboratory Medicine, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Angela Grassi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy.
| |
Collapse
|